magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^36 - x^35 + x^33 - x^32 + x^30 - x^29 + x^27 - x^26 + x^24 - x^23 + x^21 - x^20 + x^18 - x^16 + x^15 - x^13 + x^12 - x^10 + x^9 - x^7 + x^6 - x^4 + x^3 - x + 1)
gp: K = bnfinit(x^36 - x^35 + x^33 - x^32 + x^30 - x^29 + x^27 - x^26 + x^24 - x^23 + x^21 - x^20 + x^18 - x^16 + x^15 - x^13 + x^12 - x^10 + x^9 - x^7 + x^6 - x^4 + x^3 - x + 1, 1)
\( x^{36} - x^{35} + x^{33} - x^{32} + x^{30} - x^{29} + x^{27} - x^{26} + x^{24} - x^{23} + x^{21} - x^{20} + x^{18} - x^{16} + x^{15} - x^{13} + x^{12} - x^{10} + x^{9} - x^{7} + x^{6} - x^{4} + x^{3} - x + 1 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
| Degree: | | $36$ |
|
| Signature: | | $[0, 18]$ |
|
| Discriminant: | | \(11636034958735032166924075841251447518799351583251569=3^{18}\cdot 19^{34}\) | magma: Discriminant(Integers(K));
|
| Root discriminant: | | $27.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
|
| Ramified primes: | | $3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
gp: factor(abs(K.disc))[,1]~
|
| This field is Galois and abelian over $\Q$. |
| Conductor: | | \(57=3\cdot 19\) |
| Dirichlet character group:
| |
$\lbrace$$\chi_{57}(1,·)$, $\chi_{57}(2,·)$, $\chi_{57}(4,·)$, $\chi_{57}(5,·)$, $\chi_{57}(7,·)$, $\chi_{57}(8,·)$, $\chi_{57}(10,·)$, $\chi_{57}(11,·)$, $\chi_{57}(13,·)$, $\chi_{57}(14,·)$, $\chi_{57}(16,·)$, $\chi_{57}(17,·)$, $\chi_{57}(20,·)$, $\chi_{57}(22,·)$, $\chi_{57}(23,·)$, $\chi_{57}(25,·)$, $\chi_{57}(26,·)$, $\chi_{57}(28,·)$, $\chi_{57}(29,·)$, $\chi_{57}(31,·)$, $\chi_{57}(32,·)$, $\chi_{57}(34,·)$, $\chi_{57}(35,·)$, $\chi_{57}(37,·)$, $\chi_{57}(40,·)$, $\chi_{57}(41,·)$, $\chi_{57}(43,·)$, $\chi_{57}(44,·)$, $\chi_{57}(46,·)$, $\chi_{57}(47,·)$, $\chi_{57}(49,·)$, $\chi_{57}(50,·)$, $\chi_{57}(52,·)$, $\chi_{57}(53,·)$, $\chi_{57}(55,·)$, $\chi_{57}(56,·)$$\rbrace$
|
| This is a CM field. |
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$
$C_{9}$, which has order $9$
(assuming GRH)
sage: K.class_group().invariants()
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | | $17$
|
|
| Torsion generator: | | \( -a \) (order $114$)
| magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
|
| Fundamental units: | | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
(assuming GRH)
| magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
|
| Regulator: | | \( 719116485989.9799 \)
(assuming GRH)
|
|
$C_2\times C_{18}$ (as 36T2):
sage: K.galois_group(type='pari')
|
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{57}) \), 3.3.361.1, \(\Q(\sqrt{-3}, \sqrt{-19})\), 6.0.3518667.1, 6.0.2476099.1, 6.6.66854673.1, \(\Q(\zeta_{19})^+\), 12.0.4469547301936929.1, 18.0.5677392343251487443465123.1, \(\Q(\zeta_{19})\), \(\Q(\zeta_{57})^+\)
|
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| $p$ |
2 |
3 |
5 |
7 |
11 |
13 |
17 |
19 |
23 |
29 |
31 |
37 |
41 |
43 |
47 |
53 |
59 |
| Cycle type |
$18^{2}$ |
R |
$18^{2}$ |
${\href{/LocalNumberField/7.3.0.1}{3} }^{12}$ |
${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ |
$18^{2}$ |
$18^{2}$ |
R |
$18^{2}$ |
$18^{2}$ |
${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ |
${\href{/LocalNumberField/37.2.0.1}{2} }^{18}$ |
$18^{2}$ |
${\href{/LocalNumberField/43.9.0.1}{9} }^{4}$ |
$18^{2}$ |
$18^{2}$ |
$18^{2}$ |
In the table, R denotes a ramified prime.
Cycle lengths which are repeated in a cycle type are indicated by
exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])