Properties

Label 36.0.115...837.1
Degree $36$
Signature $[0, 18]$
Discriminant $1.156\times 10^{72}$
Root discriminant \(100.40\)
Ramified primes $3,13$
Class number $11069217$ (GRH)
Class group [9, 1229913] (GRH)
Galois group $C_{36}$ (as 36T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^36 - 9*x^35 + 18*x^34 + 114*x^33 - 594*x^32 + 297*x^31 + 4254*x^30 - 9936*x^29 - 234*x^28 + 32299*x^27 - 58959*x^26 + 147294*x^25 - 168765*x^24 - 310914*x^23 + 2148039*x^22 - 2780889*x^21 + 3302046*x^20 + 7764570*x^19 - 20060275*x^18 + 46453752*x^17 - 5674194*x^16 - 33922617*x^15 + 189154899*x^14 - 418326174*x^13 + 239017128*x^12 + 371741373*x^11 - 836274987*x^10 + 2255635343*x^9 - 421255737*x^8 - 4539381993*x^7 + 4681659129*x^6 - 179083917*x^5 + 666088029*x^4 - 2003355207*x^3 + 1258558695*x^2 - 261336159*x + 510583503)
 
gp: K = bnfinit(y^36 - 9*y^35 + 18*y^34 + 114*y^33 - 594*y^32 + 297*y^31 + 4254*y^30 - 9936*y^29 - 234*y^28 + 32299*y^27 - 58959*y^26 + 147294*y^25 - 168765*y^24 - 310914*y^23 + 2148039*y^22 - 2780889*y^21 + 3302046*y^20 + 7764570*y^19 - 20060275*y^18 + 46453752*y^17 - 5674194*y^16 - 33922617*y^15 + 189154899*y^14 - 418326174*y^13 + 239017128*y^12 + 371741373*y^11 - 836274987*y^10 + 2255635343*y^9 - 421255737*y^8 - 4539381993*y^7 + 4681659129*y^6 - 179083917*y^5 + 666088029*y^4 - 2003355207*y^3 + 1258558695*y^2 - 261336159*y + 510583503, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^36 - 9*x^35 + 18*x^34 + 114*x^33 - 594*x^32 + 297*x^31 + 4254*x^30 - 9936*x^29 - 234*x^28 + 32299*x^27 - 58959*x^26 + 147294*x^25 - 168765*x^24 - 310914*x^23 + 2148039*x^22 - 2780889*x^21 + 3302046*x^20 + 7764570*x^19 - 20060275*x^18 + 46453752*x^17 - 5674194*x^16 - 33922617*x^15 + 189154899*x^14 - 418326174*x^13 + 239017128*x^12 + 371741373*x^11 - 836274987*x^10 + 2255635343*x^9 - 421255737*x^8 - 4539381993*x^7 + 4681659129*x^6 - 179083917*x^5 + 666088029*x^4 - 2003355207*x^3 + 1258558695*x^2 - 261336159*x + 510583503);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - 9*x^35 + 18*x^34 + 114*x^33 - 594*x^32 + 297*x^31 + 4254*x^30 - 9936*x^29 - 234*x^28 + 32299*x^27 - 58959*x^26 + 147294*x^25 - 168765*x^24 - 310914*x^23 + 2148039*x^22 - 2780889*x^21 + 3302046*x^20 + 7764570*x^19 - 20060275*x^18 + 46453752*x^17 - 5674194*x^16 - 33922617*x^15 + 189154899*x^14 - 418326174*x^13 + 239017128*x^12 + 371741373*x^11 - 836274987*x^10 + 2255635343*x^9 - 421255737*x^8 - 4539381993*x^7 + 4681659129*x^6 - 179083917*x^5 + 666088029*x^4 - 2003355207*x^3 + 1258558695*x^2 - 261336159*x + 510583503)
 

\( x^{36} - 9 x^{35} + 18 x^{34} + 114 x^{33} - 594 x^{32} + 297 x^{31} + 4254 x^{30} - 9936 x^{29} + \cdots + 510583503 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $36$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 18]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(1156487458975635277051336992772878401742742331832969956377584210296826837\) \(\medspace = 3^{88}\cdot 13^{27}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(100.40\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{22/9}13^{3/4}\approx 100.4046703623803$
Ramified primes:   \(3\), \(13\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{13}) \)
$\card{ \Gal(K/\Q) }$:  $36$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(351=3^{3}\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{351}(1,·)$, $\chi_{351}(259,·)$, $\chi_{351}(265,·)$, $\chi_{351}(268,·)$, $\chi_{351}(142,·)$, $\chi_{351}(274,·)$, $\chi_{351}(148,·)$, $\chi_{351}(151,·)$, $\chi_{351}(25,·)$, $\chi_{351}(157,·)$, $\chi_{351}(31,·)$, $\chi_{351}(34,·)$, $\chi_{351}(40,·)$, $\chi_{351}(298,·)$, $\chi_{351}(304,·)$, $\chi_{351}(307,·)$, $\chi_{351}(181,·)$, $\chi_{351}(313,·)$, $\chi_{351}(187,·)$, $\chi_{351}(190,·)$, $\chi_{351}(64,·)$, $\chi_{351}(196,·)$, $\chi_{351}(70,·)$, $\chi_{351}(73,·)$, $\chi_{351}(79,·)$, $\chi_{351}(337,·)$, $\chi_{351}(343,·)$, $\chi_{351}(346,·)$, $\chi_{351}(220,·)$, $\chi_{351}(226,·)$, $\chi_{351}(229,·)$, $\chi_{351}(103,·)$, $\chi_{351}(235,·)$, $\chi_{351}(109,·)$, $\chi_{351}(112,·)$, $\chi_{351}(118,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{131072}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $\frac{1}{27}a^{27}-\frac{1}{3}a^{25}+\frac{1}{3}a^{23}+\frac{2}{9}a^{21}+\frac{1}{3}a^{19}-\frac{1}{9}a^{18}+\frac{1}{3}a^{17}-\frac{1}{3}a^{16}+\frac{1}{9}a^{15}+\frac{1}{3}a^{14}+\frac{2}{9}a^{12}+\frac{1}{3}a^{10}-\frac{10}{27}a^{9}-\frac{1}{3}a^{8}-\frac{1}{9}a^{6}+\frac{1}{3}a^{5}+\frac{1}{9}$, $\frac{1}{1431}a^{28}+\frac{22}{1431}a^{27}+\frac{8}{159}a^{26}+\frac{11}{159}a^{25}+\frac{40}{159}a^{24}-\frac{74}{159}a^{23}+\frac{137}{477}a^{22}-\frac{82}{477}a^{21}-\frac{14}{159}a^{20}-\frac{178}{477}a^{19}+\frac{233}{477}a^{18}-\frac{18}{53}a^{17}-\frac{173}{477}a^{16}-\frac{110}{477}a^{15}-\frac{77}{159}a^{14}+\frac{11}{477}a^{13}-\frac{190}{477}a^{12}+\frac{4}{159}a^{11}-\frac{487}{1431}a^{10}-\frac{418}{1431}a^{9}+\frac{5}{159}a^{8}-\frac{181}{477}a^{7}-\frac{199}{477}a^{6}-\frac{59}{159}a^{5}+\frac{25}{53}a^{4}+\frac{14}{53}a^{3}-\frac{10}{53}a^{2}+\frac{199}{477}a-\frac{4}{9}$, $\frac{1}{1431}a^{29}+\frac{4}{477}a^{27}-\frac{2}{53}a^{26}+\frac{10}{159}a^{25}+\frac{92}{477}a^{23}-\frac{26}{53}a^{22}+\frac{25}{53}a^{21}-\frac{208}{477}a^{20}+\frac{58}{159}a^{19}+\frac{4}{159}a^{18}-\frac{107}{477}a^{17}+\frac{13}{159}a^{16}+\frac{76}{159}a^{15}+\frac{164}{477}a^{14}+\frac{5}{53}a^{13}-\frac{23}{53}a^{12}+\frac{152}{1431}a^{11}-\frac{22}{159}a^{10}+\frac{236}{477}a^{9}+\frac{125}{477}a^{8}-\frac{11}{159}a^{7}-\frac{13}{159}a^{6}+\frac{16}{53}a^{5}-\frac{6}{53}a^{4}-\frac{206}{477}a^{2}+\frac{20}{53}a-\frac{1}{3}$, $\frac{1}{1431}a^{30}+\frac{73}{159}a^{26}+\frac{9}{53}a^{25}+\frac{83}{477}a^{24}+\frac{5}{53}a^{23}+\frac{4}{159}a^{22}-\frac{19}{477}a^{21}+\frac{67}{159}a^{20}-\frac{79}{159}a^{19}+\frac{118}{477}a^{18}+\frac{25}{159}a^{17}-\frac{9}{53}a^{16}-\frac{2}{9}a^{15}-\frac{5}{53}a^{14}+\frac{46}{159}a^{13}+\frac{314}{1431}a^{12}-\frac{70}{159}a^{11}-\frac{67}{159}a^{10}-\frac{217}{477}a^{9}-\frac{71}{159}a^{8}+\frac{25}{53}a^{7}-\frac{19}{53}a^{6}+\frac{18}{53}a^{5}+\frac{18}{53}a^{4}+\frac{190}{477}a^{3}-\frac{19}{53}a^{2}-\frac{18}{53}a$, $\frac{1}{1431}a^{31}+\frac{7}{477}a^{27}+\frac{9}{53}a^{26}+\frac{83}{477}a^{25}+\frac{5}{53}a^{24}+\frac{4}{159}a^{23}-\frac{19}{477}a^{22}-\frac{13}{53}a^{21}-\frac{79}{159}a^{20}+\frac{118}{477}a^{19}+\frac{26}{53}a^{18}-\frac{9}{53}a^{17}-\frac{2}{9}a^{16}-\frac{68}{159}a^{15}+\frac{46}{159}a^{14}+\frac{314}{1431}a^{13}-\frac{17}{159}a^{12}-\frac{67}{159}a^{11}-\frac{217}{477}a^{10}-\frac{1}{477}a^{9}+\frac{25}{53}a^{8}-\frac{19}{53}a^{7}-\frac{52}{159}a^{6}+\frac{18}{53}a^{5}+\frac{190}{477}a^{4}-\frac{19}{53}a^{3}-\frac{18}{53}a^{2}-\frac{1}{3}$, $\frac{1}{4293}a^{32}-\frac{1}{4293}a^{31}+\frac{1}{4293}a^{30}+\frac{1}{4293}a^{29}-\frac{1}{4293}a^{28}-\frac{38}{4293}a^{27}+\frac{152}{1431}a^{26}-\frac{335}{1431}a^{25}-\frac{682}{1431}a^{24}-\frac{575}{1431}a^{23}+\frac{5}{1431}a^{22}-\frac{548}{1431}a^{21}-\frac{1}{9}a^{20}-\frac{214}{477}a^{19}+\frac{67}{477}a^{18}-\frac{209}{477}a^{17}-\frac{103}{477}a^{16}+\frac{79}{159}a^{15}+\frac{1670}{4293}a^{14}+\frac{787}{4293}a^{13}+\frac{176}{4293}a^{12}-\frac{1318}{4293}a^{11}-\frac{410}{4293}a^{10}-\frac{775}{4293}a^{9}-\frac{496}{1431}a^{8}-\frac{581}{1431}a^{7}+\frac{458}{1431}a^{6}-\frac{383}{1431}a^{5}-\frac{433}{1431}a^{4}+\frac{289}{1431}a^{3}-\frac{143}{1431}a^{2}-\frac{226}{1431}a-\frac{7}{27}$, $\frac{1}{459351}a^{33}-\frac{19}{459351}a^{32}-\frac{74}{459351}a^{31}-\frac{1}{4293}a^{30}-\frac{49}{459351}a^{29}-\frac{1}{8667}a^{28}-\frac{1004}{153117}a^{27}-\frac{53462}{153117}a^{26}+\frac{66101}{153117}a^{25}-\frac{26810}{153117}a^{24}+\frac{32174}{153117}a^{23}-\frac{44675}{153117}a^{22}-\frac{13738}{51039}a^{21}-\frac{2510}{5671}a^{20}+\frac{6476}{51039}a^{19}+\frac{5990}{51039}a^{18}-\frac{21053}{51039}a^{17}-\frac{1969}{51039}a^{16}+\frac{151754}{459351}a^{15}-\frac{194909}{459351}a^{14}+\frac{47492}{459351}a^{13}-\frac{90787}{459351}a^{12}+\frac{96001}{459351}a^{11}+\frac{133412}{459351}a^{10}-\frac{2159}{51039}a^{9}-\frac{22934}{153117}a^{8}-\frac{30829}{153117}a^{7}-\frac{70049}{153117}a^{6}+\frac{72305}{153117}a^{5}+\frac{48733}{153117}a^{4}-\frac{50768}{153117}a^{3}+\frac{21920}{153117}a^{2}+\frac{33499}{153117}a+\frac{454}{963}$, $\frac{1}{93539022183}a^{34}-\frac{19544}{93539022183}a^{33}-\frac{6135448}{93539022183}a^{32}+\frac{3771296}{31179674061}a^{31}+\frac{21700300}{93539022183}a^{30}-\frac{14420833}{93539022183}a^{29}-\frac{31780165}{93539022183}a^{28}-\frac{399472099}{31179674061}a^{27}+\frac{147553181}{588295737}a^{26}+\frac{4842433982}{31179674061}a^{25}-\frac{3494987621}{31179674061}a^{24}+\frac{11758652351}{31179674061}a^{23}+\frac{12746262491}{31179674061}a^{22}-\frac{4072874975}{10393224687}a^{21}+\frac{2797661774}{10393224687}a^{20}+\frac{308873201}{3464408229}a^{19}+\frac{3417499450}{10393224687}a^{18}+\frac{2323277005}{10393224687}a^{17}-\frac{31959542200}{93539022183}a^{16}+\frac{28847482274}{93539022183}a^{15}+\frac{1915894321}{93539022183}a^{14}-\frac{945227366}{31179674061}a^{13}-\frac{27158056108}{93539022183}a^{12}+\frac{46761304069}{93539022183}a^{11}+\frac{28887580891}{93539022183}a^{10}+\frac{11446416467}{31179674061}a^{9}+\frac{13660328665}{31179674061}a^{8}-\frac{4506624766}{31179674061}a^{7}-\frac{8979623549}{31179674061}a^{6}-\frac{13816046155}{31179674061}a^{5}+\frac{854289557}{10393224687}a^{4}-\frac{12810429941}{31179674061}a^{3}+\frac{4503560474}{31179674061}a^{2}-\frac{12995762059}{31179674061}a+\frac{5409737}{21788731}$, $\frac{1}{72\!\cdots\!73}a^{35}+\frac{66\!\cdots\!97}{72\!\cdots\!73}a^{34}-\frac{37\!\cdots\!40}{72\!\cdots\!73}a^{33}+\frac{25\!\cdots\!69}{72\!\cdots\!73}a^{32}-\frac{23\!\cdots\!80}{72\!\cdots\!73}a^{31}-\frac{90\!\cdots\!67}{72\!\cdots\!73}a^{30}+\frac{15\!\cdots\!29}{13\!\cdots\!41}a^{29}+\frac{10\!\cdots\!46}{72\!\cdots\!73}a^{28}+\frac{13\!\cdots\!44}{72\!\cdots\!73}a^{27}-\frac{29\!\cdots\!65}{81\!\cdots\!97}a^{26}+\frac{31\!\cdots\!35}{81\!\cdots\!97}a^{25}-\frac{21\!\cdots\!75}{81\!\cdots\!97}a^{24}-\frac{76\!\cdots\!45}{24\!\cdots\!91}a^{23}+\frac{58\!\cdots\!75}{24\!\cdots\!91}a^{22}+\frac{30\!\cdots\!32}{24\!\cdots\!91}a^{21}+\frac{52\!\cdots\!78}{81\!\cdots\!97}a^{20}+\frac{38\!\cdots\!96}{90\!\cdots\!33}a^{19}+\frac{23\!\cdots\!72}{81\!\cdots\!97}a^{18}-\frac{28\!\cdots\!13}{72\!\cdots\!73}a^{17}-\frac{22\!\cdots\!35}{72\!\cdots\!73}a^{16}-\frac{69\!\cdots\!28}{72\!\cdots\!73}a^{15}-\frac{28\!\cdots\!45}{72\!\cdots\!73}a^{14}+\frac{19\!\cdots\!85}{72\!\cdots\!73}a^{13}+\frac{67\!\cdots\!86}{72\!\cdots\!73}a^{12}+\frac{98\!\cdots\!69}{72\!\cdots\!73}a^{11}-\frac{36\!\cdots\!28}{72\!\cdots\!73}a^{10}+\frac{32\!\cdots\!03}{72\!\cdots\!73}a^{9}+\frac{38\!\cdots\!13}{81\!\cdots\!97}a^{8}-\frac{35\!\cdots\!23}{81\!\cdots\!97}a^{7}-\frac{38\!\cdots\!13}{90\!\cdots\!33}a^{6}+\frac{17\!\cdots\!44}{24\!\cdots\!91}a^{5}+\frac{10\!\cdots\!41}{24\!\cdots\!91}a^{4}-\frac{37\!\cdots\!97}{24\!\cdots\!91}a^{3}-\frac{39\!\cdots\!24}{24\!\cdots\!91}a^{2}+\frac{84\!\cdots\!19}{24\!\cdots\!91}a-\frac{17\!\cdots\!32}{45\!\cdots\!47}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $3$

Class group and class number

$C_{9}\times C_{1229913}$, which has order $11069217$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $17$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{34\!\cdots\!05}{33\!\cdots\!81}a^{35}-\frac{85\!\cdots\!02}{33\!\cdots\!81}a^{34}+\frac{46\!\cdots\!65}{29\!\cdots\!29}a^{33}-\frac{83\!\cdots\!26}{99\!\cdots\!43}a^{32}-\frac{85\!\cdots\!84}{33\!\cdots\!81}a^{31}+\frac{25\!\cdots\!54}{29\!\cdots\!29}a^{30}+\frac{47\!\cdots\!64}{99\!\cdots\!43}a^{29}-\frac{25\!\cdots\!30}{33\!\cdots\!81}a^{28}+\frac{34\!\cdots\!10}{29\!\cdots\!29}a^{27}+\frac{30\!\cdots\!82}{33\!\cdots\!81}a^{26}-\frac{16\!\cdots\!89}{33\!\cdots\!81}a^{25}+\frac{28\!\cdots\!93}{33\!\cdots\!81}a^{24}-\frac{76\!\cdots\!08}{33\!\cdots\!81}a^{23}+\frac{36\!\cdots\!15}{33\!\cdots\!81}a^{22}+\frac{77\!\cdots\!09}{99\!\cdots\!43}a^{21}-\frac{11\!\cdots\!52}{33\!\cdots\!81}a^{20}+\frac{99\!\cdots\!92}{33\!\cdots\!81}a^{19}-\frac{12\!\cdots\!29}{33\!\cdots\!81}a^{18}-\frac{57\!\cdots\!12}{33\!\cdots\!81}a^{17}+\frac{87\!\cdots\!01}{33\!\cdots\!81}a^{16}-\frac{20\!\cdots\!37}{29\!\cdots\!29}a^{15}-\frac{31\!\cdots\!48}{99\!\cdots\!43}a^{14}+\frac{13\!\cdots\!39}{33\!\cdots\!81}a^{13}-\frac{10\!\cdots\!14}{29\!\cdots\!29}a^{12}+\frac{99\!\cdots\!36}{18\!\cdots\!31}a^{11}-\frac{24\!\cdots\!41}{33\!\cdots\!81}a^{10}-\frac{17\!\cdots\!33}{29\!\cdots\!29}a^{9}+\frac{45\!\cdots\!61}{33\!\cdots\!81}a^{8}-\frac{11\!\cdots\!94}{33\!\cdots\!81}a^{7}-\frac{60\!\cdots\!03}{33\!\cdots\!81}a^{6}+\frac{19\!\cdots\!20}{33\!\cdots\!81}a^{5}-\frac{15\!\cdots\!01}{33\!\cdots\!81}a^{4}+\frac{10\!\cdots\!77}{99\!\cdots\!43}a^{3}-\frac{28\!\cdots\!42}{33\!\cdots\!81}a^{2}+\frac{19\!\cdots\!95}{33\!\cdots\!81}a-\frac{31\!\cdots\!23}{18\!\cdots\!31}$, $\frac{43\!\cdots\!16}{33\!\cdots\!81}a^{35}-\frac{54\!\cdots\!27}{33\!\cdots\!81}a^{34}+\frac{18\!\cdots\!58}{29\!\cdots\!29}a^{33}+\frac{83\!\cdots\!99}{99\!\cdots\!43}a^{32}-\frac{43\!\cdots\!99}{33\!\cdots\!81}a^{31}+\frac{84\!\cdots\!71}{29\!\cdots\!29}a^{30}+\frac{50\!\cdots\!16}{99\!\cdots\!43}a^{29}-\frac{10\!\cdots\!48}{33\!\cdots\!81}a^{28}+\frac{10\!\cdots\!32}{29\!\cdots\!29}a^{27}+\frac{16\!\cdots\!30}{33\!\cdots\!81}a^{26}-\frac{67\!\cdots\!50}{33\!\cdots\!81}a^{25}+\frac{13\!\cdots\!00}{33\!\cdots\!81}a^{24}-\frac{28\!\cdots\!56}{33\!\cdots\!81}a^{23}+\frac{46\!\cdots\!27}{33\!\cdots\!81}a^{22}+\frac{41\!\cdots\!27}{99\!\cdots\!43}a^{21}-\frac{41\!\cdots\!80}{33\!\cdots\!81}a^{20}+\frac{45\!\cdots\!69}{33\!\cdots\!81}a^{19}-\frac{18\!\cdots\!50}{33\!\cdots\!81}a^{18}-\frac{21\!\cdots\!16}{33\!\cdots\!81}a^{17}+\frac{42\!\cdots\!82}{33\!\cdots\!81}a^{16}-\frac{63\!\cdots\!89}{29\!\cdots\!29}a^{15}-\frac{85\!\cdots\!68}{99\!\cdots\!43}a^{14}+\frac{91\!\cdots\!45}{33\!\cdots\!81}a^{13}-\frac{43\!\cdots\!71}{29\!\cdots\!29}a^{12}+\frac{17\!\cdots\!97}{99\!\cdots\!43}a^{11}-\frac{12\!\cdots\!90}{33\!\cdots\!81}a^{10}-\frac{73\!\cdots\!90}{29\!\cdots\!29}a^{9}+\frac{19\!\cdots\!38}{33\!\cdots\!81}a^{8}-\frac{35\!\cdots\!50}{33\!\cdots\!81}a^{7}-\frac{29\!\cdots\!83}{33\!\cdots\!81}a^{6}+\frac{69\!\cdots\!64}{33\!\cdots\!81}a^{5}-\frac{51\!\cdots\!85}{33\!\cdots\!81}a^{4}+\frac{43\!\cdots\!65}{99\!\cdots\!43}a^{3}-\frac{11\!\cdots\!08}{33\!\cdots\!81}a^{2}+\frac{59\!\cdots\!91}{33\!\cdots\!81}a-\frac{28\!\cdots\!87}{18\!\cdots\!31}$, $\frac{99\!\cdots\!49}{81\!\cdots\!97}a^{35}-\frac{26\!\cdots\!93}{27\!\cdots\!99}a^{34}+\frac{11\!\cdots\!96}{90\!\cdots\!33}a^{33}+\frac{38\!\cdots\!97}{24\!\cdots\!91}a^{32}-\frac{14\!\cdots\!03}{24\!\cdots\!91}a^{31}-\frac{60\!\cdots\!31}{24\!\cdots\!91}a^{30}+\frac{13\!\cdots\!22}{24\!\cdots\!91}a^{29}-\frac{18\!\cdots\!66}{24\!\cdots\!91}a^{28}-\frac{24\!\cdots\!03}{24\!\cdots\!91}a^{27}+\frac{30\!\cdots\!82}{81\!\cdots\!97}a^{26}-\frac{31\!\cdots\!34}{81\!\cdots\!97}a^{25}+\frac{10\!\cdots\!38}{81\!\cdots\!97}a^{24}-\frac{45\!\cdots\!08}{81\!\cdots\!97}a^{23}-\frac{43\!\cdots\!66}{81\!\cdots\!97}a^{22}+\frac{18\!\cdots\!81}{81\!\cdots\!97}a^{21}-\frac{32\!\cdots\!92}{27\!\cdots\!99}a^{20}+\frac{40\!\cdots\!99}{27\!\cdots\!99}a^{19}+\frac{34\!\cdots\!67}{27\!\cdots\!99}a^{18}-\frac{12\!\cdots\!28}{81\!\cdots\!97}a^{17}+\frac{10\!\cdots\!94}{27\!\cdots\!99}a^{16}+\frac{36\!\cdots\!87}{90\!\cdots\!33}a^{15}-\frac{94\!\cdots\!37}{24\!\cdots\!91}a^{14}+\frac{49\!\cdots\!30}{24\!\cdots\!91}a^{13}-\frac{76\!\cdots\!16}{24\!\cdots\!91}a^{12}-\frac{28\!\cdots\!82}{24\!\cdots\!91}a^{11}+\frac{15\!\cdots\!86}{24\!\cdots\!91}a^{10}-\frac{16\!\cdots\!67}{24\!\cdots\!91}a^{9}+\frac{15\!\cdots\!88}{81\!\cdots\!97}a^{8}+\frac{13\!\cdots\!17}{81\!\cdots\!97}a^{7}-\frac{44\!\cdots\!52}{81\!\cdots\!97}a^{6}+\frac{98\!\cdots\!28}{81\!\cdots\!97}a^{5}+\frac{32\!\cdots\!57}{81\!\cdots\!97}a^{4}+\frac{80\!\cdots\!27}{81\!\cdots\!97}a^{3}-\frac{22\!\cdots\!12}{81\!\cdots\!97}a^{2}-\frac{60\!\cdots\!45}{81\!\cdots\!97}a+\frac{12\!\cdots\!07}{15\!\cdots\!49}$, $\frac{33\!\cdots\!98}{27\!\cdots\!99}a^{35}-\frac{16\!\cdots\!89}{81\!\cdots\!97}a^{34}+\frac{82\!\cdots\!12}{81\!\cdots\!97}a^{33}+\frac{28\!\cdots\!08}{24\!\cdots\!91}a^{32}-\frac{43\!\cdots\!65}{24\!\cdots\!91}a^{31}+\frac{13\!\cdots\!13}{24\!\cdots\!91}a^{30}+\frac{94\!\cdots\!98}{24\!\cdots\!91}a^{29}-\frac{12\!\cdots\!28}{24\!\cdots\!91}a^{28}+\frac{18\!\cdots\!62}{24\!\cdots\!91}a^{27}+\frac{42\!\cdots\!58}{81\!\cdots\!97}a^{26}-\frac{27\!\cdots\!22}{81\!\cdots\!97}a^{25}+\frac{53\!\cdots\!73}{81\!\cdots\!97}a^{24}-\frac{12\!\cdots\!20}{81\!\cdots\!97}a^{23}+\frac{64\!\cdots\!11}{81\!\cdots\!97}a^{22}+\frac{44\!\cdots\!13}{81\!\cdots\!97}a^{21}-\frac{59\!\cdots\!69}{27\!\cdots\!99}a^{20}+\frac{66\!\cdots\!37}{27\!\cdots\!99}a^{19}-\frac{55\!\cdots\!79}{27\!\cdots\!99}a^{18}-\frac{28\!\cdots\!29}{27\!\cdots\!99}a^{17}+\frac{16\!\cdots\!55}{81\!\cdots\!97}a^{16}-\frac{34\!\cdots\!87}{81\!\cdots\!97}a^{15}-\frac{22\!\cdots\!54}{24\!\cdots\!91}a^{14}+\frac{99\!\cdots\!73}{24\!\cdots\!91}a^{13}-\frac{56\!\cdots\!53}{24\!\cdots\!91}a^{12}+\frac{87\!\cdots\!67}{24\!\cdots\!91}a^{11}-\frac{24\!\cdots\!02}{24\!\cdots\!91}a^{10}-\frac{94\!\cdots\!23}{24\!\cdots\!91}a^{9}+\frac{81\!\cdots\!66}{81\!\cdots\!97}a^{8}-\frac{16\!\cdots\!26}{81\!\cdots\!97}a^{7}-\frac{63\!\cdots\!53}{81\!\cdots\!97}a^{6}+\frac{32\!\cdots\!09}{81\!\cdots\!97}a^{5}-\frac{29\!\cdots\!25}{81\!\cdots\!97}a^{4}+\frac{71\!\cdots\!98}{81\!\cdots\!97}a^{3}-\frac{17\!\cdots\!68}{81\!\cdots\!97}a^{2}+\frac{16\!\cdots\!58}{81\!\cdots\!97}a-\frac{14\!\cdots\!91}{15\!\cdots\!49}$, $\frac{10\!\cdots\!54}{81\!\cdots\!97}a^{35}-\frac{11\!\cdots\!56}{24\!\cdots\!91}a^{34}-\frac{54\!\cdots\!97}{24\!\cdots\!91}a^{33}+\frac{33\!\cdots\!29}{24\!\cdots\!91}a^{32}+\frac{51\!\cdots\!89}{27\!\cdots\!99}a^{31}-\frac{14\!\cdots\!48}{90\!\cdots\!33}a^{30}-\frac{11\!\cdots\!38}{24\!\cdots\!91}a^{29}+\frac{31\!\cdots\!65}{24\!\cdots\!91}a^{28}+\frac{54\!\cdots\!30}{24\!\cdots\!91}a^{27}-\frac{45\!\cdots\!88}{81\!\cdots\!97}a^{26}+\frac{21\!\cdots\!04}{81\!\cdots\!97}a^{25}+\frac{18\!\cdots\!87}{81\!\cdots\!97}a^{24}+\frac{23\!\cdots\!74}{81\!\cdots\!97}a^{23}+\frac{27\!\cdots\!61}{81\!\cdots\!97}a^{22}-\frac{18\!\cdots\!14}{81\!\cdots\!97}a^{21}+\frac{41\!\cdots\!47}{90\!\cdots\!33}a^{20}+\frac{41\!\cdots\!70}{27\!\cdots\!99}a^{19}+\frac{48\!\cdots\!09}{27\!\cdots\!99}a^{18}+\frac{50\!\cdots\!44}{81\!\cdots\!97}a^{17}+\frac{22\!\cdots\!01}{24\!\cdots\!91}a^{16}+\frac{32\!\cdots\!57}{24\!\cdots\!91}a^{15}+\frac{11\!\cdots\!92}{24\!\cdots\!91}a^{14}+\frac{13\!\cdots\!90}{27\!\cdots\!99}a^{13}+\frac{14\!\cdots\!36}{27\!\cdots\!99}a^{12}+\frac{43\!\cdots\!10}{24\!\cdots\!91}a^{11}-\frac{57\!\cdots\!48}{24\!\cdots\!91}a^{10}+\frac{24\!\cdots\!07}{24\!\cdots\!91}a^{9}+\frac{23\!\cdots\!58}{81\!\cdots\!97}a^{8}+\frac{59\!\cdots\!60}{81\!\cdots\!97}a^{7}+\frac{17\!\cdots\!44}{81\!\cdots\!97}a^{6}+\frac{70\!\cdots\!10}{81\!\cdots\!97}a^{5}-\frac{25\!\cdots\!75}{90\!\cdots\!33}a^{4}+\frac{57\!\cdots\!17}{90\!\cdots\!33}a^{3}+\frac{13\!\cdots\!51}{81\!\cdots\!97}a^{2}+\frac{59\!\cdots\!93}{81\!\cdots\!97}a+\frac{84\!\cdots\!83}{15\!\cdots\!49}$, $\frac{17\!\cdots\!77}{27\!\cdots\!99}a^{35}-\frac{15\!\cdots\!01}{24\!\cdots\!91}a^{34}+\frac{32\!\cdots\!59}{24\!\cdots\!91}a^{33}+\frac{19\!\cdots\!89}{24\!\cdots\!91}a^{32}-\frac{35\!\cdots\!96}{81\!\cdots\!97}a^{31}+\frac{16\!\cdots\!67}{81\!\cdots\!97}a^{30}+\frac{81\!\cdots\!60}{24\!\cdots\!91}a^{29}-\frac{18\!\cdots\!19}{24\!\cdots\!91}a^{28}-\frac{75\!\cdots\!15}{24\!\cdots\!91}a^{27}+\frac{23\!\cdots\!26}{81\!\cdots\!97}a^{26}-\frac{30\!\cdots\!36}{81\!\cdots\!97}a^{25}+\frac{62\!\cdots\!63}{81\!\cdots\!97}a^{24}-\frac{94\!\cdots\!66}{81\!\cdots\!97}a^{23}-\frac{25\!\cdots\!43}{81\!\cdots\!97}a^{22}+\frac{12\!\cdots\!21}{81\!\cdots\!97}a^{21}-\frac{51\!\cdots\!59}{27\!\cdots\!99}a^{20}+\frac{13\!\cdots\!93}{27\!\cdots\!99}a^{19}+\frac{46\!\cdots\!68}{90\!\cdots\!33}a^{18}-\frac{16\!\cdots\!52}{90\!\cdots\!33}a^{17}+\frac{54\!\cdots\!29}{24\!\cdots\!91}a^{16}-\frac{81\!\cdots\!26}{24\!\cdots\!91}a^{15}-\frac{16\!\cdots\!11}{24\!\cdots\!91}a^{14}+\frac{74\!\cdots\!92}{81\!\cdots\!97}a^{13}-\frac{25\!\cdots\!18}{81\!\cdots\!97}a^{12}+\frac{15\!\cdots\!02}{24\!\cdots\!91}a^{11}+\frac{13\!\cdots\!68}{24\!\cdots\!91}a^{10}-\frac{12\!\cdots\!64}{24\!\cdots\!91}a^{9}+\frac{10\!\cdots\!18}{81\!\cdots\!97}a^{8}-\frac{29\!\cdots\!89}{81\!\cdots\!97}a^{7}-\frac{42\!\cdots\!32}{81\!\cdots\!97}a^{6}+\frac{18\!\cdots\!00}{81\!\cdots\!97}a^{5}+\frac{18\!\cdots\!88}{50\!\cdots\!83}a^{4}+\frac{10\!\cdots\!70}{27\!\cdots\!99}a^{3}-\frac{25\!\cdots\!52}{81\!\cdots\!97}a^{2}-\frac{80\!\cdots\!04}{81\!\cdots\!97}a+\frac{94\!\cdots\!60}{15\!\cdots\!49}$, $\frac{22\!\cdots\!76}{24\!\cdots\!91}a^{35}-\frac{25\!\cdots\!35}{24\!\cdots\!91}a^{34}+\frac{11\!\cdots\!34}{24\!\cdots\!91}a^{33}-\frac{82\!\cdots\!73}{24\!\cdots\!91}a^{32}-\frac{52\!\cdots\!47}{81\!\cdots\!97}a^{31}+\frac{25\!\cdots\!73}{81\!\cdots\!97}a^{30}-\frac{26\!\cdots\!70}{90\!\cdots\!33}a^{29}-\frac{49\!\cdots\!14}{24\!\cdots\!91}a^{28}+\frac{18\!\cdots\!88}{24\!\cdots\!91}a^{27}-\frac{38\!\cdots\!10}{81\!\cdots\!97}a^{26}-\frac{17\!\cdots\!84}{81\!\cdots\!97}a^{25}+\frac{51\!\cdots\!39}{81\!\cdots\!97}a^{24}-\frac{23\!\cdots\!66}{27\!\cdots\!99}a^{23}+\frac{11\!\cdots\!83}{81\!\cdots\!97}a^{22}+\frac{16\!\cdots\!39}{81\!\cdots\!97}a^{21}-\frac{33\!\cdots\!45}{27\!\cdots\!99}a^{20}+\frac{87\!\cdots\!15}{27\!\cdots\!99}a^{19}-\frac{30\!\cdots\!67}{27\!\cdots\!99}a^{18}-\frac{32\!\cdots\!63}{24\!\cdots\!91}a^{17}+\frac{53\!\cdots\!39}{24\!\cdots\!91}a^{16}-\frac{61\!\cdots\!59}{24\!\cdots\!91}a^{15}+\frac{95\!\cdots\!76}{24\!\cdots\!91}a^{14}+\frac{53\!\cdots\!89}{81\!\cdots\!97}a^{13}-\frac{89\!\cdots\!63}{81\!\cdots\!97}a^{12}+\frac{26\!\cdots\!41}{81\!\cdots\!97}a^{11}-\frac{86\!\cdots\!16}{24\!\cdots\!91}a^{10}-\frac{70\!\cdots\!31}{24\!\cdots\!91}a^{9}+\frac{28\!\cdots\!05}{30\!\cdots\!13}a^{8}-\frac{97\!\cdots\!72}{81\!\cdots\!97}a^{7}+\frac{15\!\cdots\!43}{81\!\cdots\!97}a^{6}+\frac{27\!\cdots\!87}{81\!\cdots\!97}a^{5}-\frac{17\!\cdots\!32}{27\!\cdots\!99}a^{4}+\frac{34\!\cdots\!26}{27\!\cdots\!99}a^{3}+\frac{45\!\cdots\!64}{27\!\cdots\!99}a^{2}+\frac{77\!\cdots\!49}{81\!\cdots\!97}a-\frac{14\!\cdots\!30}{15\!\cdots\!49}$, $\frac{85\!\cdots\!82}{24\!\cdots\!91}a^{35}-\frac{70\!\cdots\!91}{24\!\cdots\!91}a^{34}+\frac{62\!\cdots\!51}{24\!\cdots\!91}a^{33}+\frac{13\!\cdots\!34}{24\!\cdots\!91}a^{32}-\frac{50\!\cdots\!72}{27\!\cdots\!99}a^{31}-\frac{59\!\cdots\!55}{27\!\cdots\!99}a^{30}+\frac{17\!\cdots\!68}{81\!\cdots\!97}a^{29}-\frac{48\!\cdots\!55}{24\!\cdots\!91}a^{28}-\frac{19\!\cdots\!34}{24\!\cdots\!91}a^{27}+\frac{14\!\cdots\!86}{81\!\cdots\!97}a^{26}-\frac{14\!\cdots\!82}{81\!\cdots\!97}a^{25}+\frac{78\!\cdots\!78}{81\!\cdots\!97}a^{24}+\frac{17\!\cdots\!18}{90\!\cdots\!33}a^{23}-\frac{22\!\cdots\!34}{81\!\cdots\!97}a^{22}+\frac{57\!\cdots\!99}{81\!\cdots\!97}a^{21}+\frac{43\!\cdots\!94}{27\!\cdots\!99}a^{20}-\frac{47\!\cdots\!21}{27\!\cdots\!99}a^{19}+\frac{41\!\cdots\!42}{90\!\cdots\!33}a^{18}-\frac{15\!\cdots\!65}{24\!\cdots\!91}a^{17}-\frac{49\!\cdots\!93}{24\!\cdots\!91}a^{16}+\frac{61\!\cdots\!80}{24\!\cdots\!91}a^{15}-\frac{12\!\cdots\!96}{24\!\cdots\!91}a^{14}+\frac{44\!\cdots\!97}{27\!\cdots\!99}a^{13}-\frac{16\!\cdots\!81}{27\!\cdots\!99}a^{12}-\frac{19\!\cdots\!79}{81\!\cdots\!97}a^{11}+\frac{12\!\cdots\!52}{24\!\cdots\!91}a^{10}-\frac{59\!\cdots\!82}{24\!\cdots\!91}a^{9}+\frac{11\!\cdots\!25}{81\!\cdots\!97}a^{8}+\frac{94\!\cdots\!88}{81\!\cdots\!97}a^{7}-\frac{30\!\cdots\!61}{81\!\cdots\!97}a^{6}-\frac{13\!\cdots\!81}{81\!\cdots\!97}a^{5}+\frac{56\!\cdots\!53}{90\!\cdots\!33}a^{4}-\frac{56\!\cdots\!25}{90\!\cdots\!33}a^{3}-\frac{22\!\cdots\!39}{90\!\cdots\!33}a^{2}-\frac{87\!\cdots\!95}{81\!\cdots\!97}a+\frac{22\!\cdots\!89}{15\!\cdots\!49}$, $\frac{35\!\cdots\!41}{74\!\cdots\!73}a^{35}-\frac{29\!\cdots\!08}{74\!\cdots\!73}a^{34}+\frac{34\!\cdots\!01}{74\!\cdots\!73}a^{33}+\frac{54\!\cdots\!76}{74\!\cdots\!73}a^{32}-\frac{67\!\cdots\!63}{24\!\cdots\!91}a^{31}-\frac{63\!\cdots\!04}{24\!\cdots\!91}a^{30}+\frac{76\!\cdots\!68}{24\!\cdots\!91}a^{29}-\frac{22\!\cdots\!15}{74\!\cdots\!73}a^{28}-\frac{99\!\cdots\!67}{74\!\cdots\!73}a^{27}+\frac{69\!\cdots\!56}{24\!\cdots\!91}a^{26}+\frac{52\!\cdots\!76}{24\!\cdots\!91}a^{25}-\frac{12\!\cdots\!66}{24\!\cdots\!91}a^{24}-\frac{56\!\cdots\!76}{82\!\cdots\!97}a^{23}-\frac{15\!\cdots\!18}{24\!\cdots\!91}a^{22}+\frac{25\!\cdots\!32}{24\!\cdots\!91}a^{21}-\frac{19\!\cdots\!76}{82\!\cdots\!97}a^{20}-\frac{76\!\cdots\!06}{27\!\cdots\!99}a^{19}+\frac{40\!\cdots\!27}{82\!\cdots\!97}a^{18}+\frac{10\!\cdots\!53}{74\!\cdots\!73}a^{17}-\frac{15\!\cdots\!43}{74\!\cdots\!73}a^{16}+\frac{10\!\cdots\!15}{74\!\cdots\!73}a^{15}-\frac{12\!\cdots\!37}{74\!\cdots\!73}a^{14}-\frac{39\!\cdots\!79}{24\!\cdots\!91}a^{13}-\frac{92\!\cdots\!67}{24\!\cdots\!91}a^{12}+\frac{59\!\cdots\!27}{82\!\cdots\!97}a^{11}+\frac{21\!\cdots\!82}{74\!\cdots\!73}a^{10}-\frac{18\!\cdots\!07}{74\!\cdots\!73}a^{9}-\frac{10\!\cdots\!22}{24\!\cdots\!91}a^{8}+\frac{12\!\cdots\!95}{24\!\cdots\!91}a^{7}+\frac{22\!\cdots\!45}{24\!\cdots\!91}a^{6}+\frac{90\!\cdots\!67}{24\!\cdots\!91}a^{5}-\frac{15\!\cdots\!14}{82\!\cdots\!97}a^{4}+\frac{80\!\cdots\!70}{82\!\cdots\!97}a^{3}-\frac{11\!\cdots\!27}{82\!\cdots\!97}a^{2}+\frac{13\!\cdots\!34}{24\!\cdots\!91}a+\frac{14\!\cdots\!00}{46\!\cdots\!47}$, $\frac{24\!\cdots\!06}{72\!\cdots\!73}a^{35}-\frac{21\!\cdots\!29}{72\!\cdots\!73}a^{34}+\frac{16\!\cdots\!17}{27\!\cdots\!17}a^{33}+\frac{27\!\cdots\!06}{72\!\cdots\!73}a^{32}-\frac{14\!\cdots\!04}{72\!\cdots\!73}a^{31}+\frac{75\!\cdots\!83}{72\!\cdots\!73}a^{30}+\frac{10\!\cdots\!82}{72\!\cdots\!73}a^{29}-\frac{24\!\cdots\!98}{72\!\cdots\!73}a^{28}-\frac{57\!\cdots\!85}{72\!\cdots\!73}a^{27}+\frac{29\!\cdots\!83}{27\!\cdots\!99}a^{26}-\frac{15\!\cdots\!84}{81\!\cdots\!97}a^{25}+\frac{13\!\cdots\!81}{27\!\cdots\!99}a^{24}-\frac{14\!\cdots\!83}{24\!\cdots\!91}a^{23}-\frac{25\!\cdots\!29}{24\!\cdots\!91}a^{22}+\frac{17\!\cdots\!57}{24\!\cdots\!91}a^{21}-\frac{76\!\cdots\!40}{81\!\cdots\!97}a^{20}+\frac{87\!\cdots\!27}{81\!\cdots\!97}a^{19}+\frac{22\!\cdots\!13}{90\!\cdots\!33}a^{18}-\frac{50\!\cdots\!72}{72\!\cdots\!73}a^{17}+\frac{11\!\cdots\!28}{72\!\cdots\!73}a^{16}-\frac{20\!\cdots\!49}{72\!\cdots\!73}a^{15}-\frac{88\!\cdots\!71}{72\!\cdots\!73}a^{14}+\frac{44\!\cdots\!56}{72\!\cdots\!73}a^{13}-\frac{10\!\cdots\!16}{72\!\cdots\!73}a^{12}+\frac{11\!\cdots\!07}{13\!\cdots\!41}a^{11}+\frac{17\!\cdots\!84}{13\!\cdots\!41}a^{10}-\frac{37\!\cdots\!60}{13\!\cdots\!41}a^{9}+\frac{20\!\cdots\!51}{27\!\cdots\!99}a^{8}-\frac{16\!\cdots\!38}{81\!\cdots\!97}a^{7}-\frac{12\!\cdots\!86}{81\!\cdots\!97}a^{6}+\frac{37\!\cdots\!81}{24\!\cdots\!91}a^{5}-\frac{27\!\cdots\!04}{24\!\cdots\!91}a^{4}+\frac{12\!\cdots\!89}{24\!\cdots\!91}a^{3}-\frac{17\!\cdots\!08}{24\!\cdots\!91}a^{2}-\frac{29\!\cdots\!53}{24\!\cdots\!91}a+\frac{19\!\cdots\!88}{45\!\cdots\!47}$, $\frac{14\!\cdots\!54}{72\!\cdots\!73}a^{35}-\frac{48\!\cdots\!20}{24\!\cdots\!91}a^{34}+\frac{13\!\cdots\!08}{24\!\cdots\!91}a^{33}+\frac{13\!\cdots\!07}{72\!\cdots\!73}a^{32}-\frac{33\!\cdots\!82}{24\!\cdots\!91}a^{31}+\frac{47\!\cdots\!86}{24\!\cdots\!91}a^{30}+\frac{52\!\cdots\!50}{72\!\cdots\!73}a^{29}-\frac{69\!\cdots\!54}{24\!\cdots\!91}a^{28}+\frac{62\!\cdots\!07}{24\!\cdots\!91}a^{27}+\frac{49\!\cdots\!33}{90\!\cdots\!33}a^{26}-\frac{52\!\cdots\!29}{27\!\cdots\!99}a^{25}+\frac{37\!\cdots\!55}{81\!\cdots\!97}a^{24}-\frac{16\!\cdots\!24}{24\!\cdots\!91}a^{23}-\frac{12\!\cdots\!89}{81\!\cdots\!97}a^{22}+\frac{13\!\cdots\!21}{27\!\cdots\!99}a^{21}-\frac{28\!\cdots\!03}{27\!\cdots\!99}a^{20}+\frac{12\!\cdots\!34}{81\!\cdots\!97}a^{19}+\frac{19\!\cdots\!38}{27\!\cdots\!99}a^{18}-\frac{39\!\cdots\!82}{72\!\cdots\!73}a^{17}+\frac{36\!\cdots\!42}{24\!\cdots\!91}a^{16}-\frac{31\!\cdots\!34}{24\!\cdots\!91}a^{15}-\frac{94\!\cdots\!22}{72\!\cdots\!73}a^{14}+\frac{11\!\cdots\!33}{24\!\cdots\!91}a^{13}-\frac{31\!\cdots\!32}{24\!\cdots\!91}a^{12}+\frac{11\!\cdots\!18}{72\!\cdots\!73}a^{11}-\frac{46\!\cdots\!50}{24\!\cdots\!91}a^{10}-\frac{64\!\cdots\!78}{24\!\cdots\!91}a^{9}+\frac{57\!\cdots\!19}{81\!\cdots\!97}a^{8}-\frac{18\!\cdots\!14}{27\!\cdots\!99}a^{7}-\frac{52\!\cdots\!86}{90\!\cdots\!33}a^{6}+\frac{49\!\cdots\!68}{24\!\cdots\!91}a^{5}-\frac{14\!\cdots\!84}{81\!\cdots\!97}a^{4}+\frac{50\!\cdots\!06}{81\!\cdots\!97}a^{3}-\frac{23\!\cdots\!22}{24\!\cdots\!91}a^{2}+\frac{11\!\cdots\!87}{81\!\cdots\!97}a-\frac{15\!\cdots\!13}{15\!\cdots\!49}$, $\frac{82\!\cdots\!77}{81\!\cdots\!97}a^{35}-\frac{19\!\cdots\!48}{24\!\cdots\!91}a^{34}+\frac{62\!\cdots\!31}{72\!\cdots\!73}a^{33}+\frac{33\!\cdots\!54}{24\!\cdots\!91}a^{32}-\frac{13\!\cdots\!75}{27\!\cdots\!99}a^{31}-\frac{35\!\cdots\!03}{96\!\cdots\!89}a^{30}+\frac{11\!\cdots\!73}{24\!\cdots\!91}a^{29}-\frac{13\!\cdots\!40}{24\!\cdots\!91}a^{28}-\frac{89\!\cdots\!69}{72\!\cdots\!73}a^{27}+\frac{17\!\cdots\!17}{50\!\cdots\!83}a^{26}-\frac{16\!\cdots\!34}{81\!\cdots\!97}a^{25}+\frac{60\!\cdots\!93}{81\!\cdots\!97}a^{24}-\frac{10\!\cdots\!40}{81\!\cdots\!97}a^{23}-\frac{40\!\cdots\!67}{81\!\cdots\!97}a^{22}+\frac{44\!\cdots\!60}{24\!\cdots\!91}a^{21}-\frac{91\!\cdots\!53}{27\!\cdots\!99}a^{20}-\frac{14\!\cdots\!84}{81\!\cdots\!97}a^{19}+\frac{89\!\cdots\!64}{81\!\cdots\!97}a^{18}-\frac{92\!\cdots\!87}{81\!\cdots\!97}a^{17}+\frac{50\!\cdots\!27}{24\!\cdots\!91}a^{16}+\frac{34\!\cdots\!82}{72\!\cdots\!73}a^{15}-\frac{11\!\cdots\!86}{24\!\cdots\!91}a^{14}+\frac{34\!\cdots\!80}{27\!\cdots\!99}a^{13}-\frac{14\!\cdots\!32}{72\!\cdots\!73}a^{12}-\frac{63\!\cdots\!40}{24\!\cdots\!91}a^{11}+\frac{16\!\cdots\!12}{24\!\cdots\!91}a^{10}-\frac{21\!\cdots\!55}{72\!\cdots\!73}a^{9}+\frac{79\!\cdots\!87}{81\!\cdots\!97}a^{8}+\frac{59\!\cdots\!06}{27\!\cdots\!99}a^{7}-\frac{44\!\cdots\!17}{81\!\cdots\!97}a^{6}-\frac{31\!\cdots\!49}{27\!\cdots\!99}a^{5}+\frac{19\!\cdots\!50}{27\!\cdots\!99}a^{4}+\frac{60\!\cdots\!97}{24\!\cdots\!91}a^{3}-\frac{25\!\cdots\!99}{81\!\cdots\!97}a^{2}-\frac{96\!\cdots\!60}{81\!\cdots\!97}a+\frac{83\!\cdots\!89}{45\!\cdots\!47}$, $\frac{13\!\cdots\!84}{72\!\cdots\!73}a^{35}-\frac{94\!\cdots\!42}{72\!\cdots\!73}a^{34}+\frac{18\!\cdots\!23}{72\!\cdots\!73}a^{33}+\frac{18\!\cdots\!09}{72\!\cdots\!73}a^{32}-\frac{44\!\cdots\!86}{72\!\cdots\!73}a^{31}-\frac{88\!\cdots\!09}{72\!\cdots\!73}a^{30}+\frac{50\!\cdots\!89}{72\!\cdots\!73}a^{29}-\frac{19\!\cdots\!41}{72\!\cdots\!73}a^{28}-\frac{14\!\cdots\!47}{72\!\cdots\!73}a^{27}+\frac{27\!\cdots\!44}{81\!\cdots\!97}a^{26}-\frac{12\!\cdots\!06}{81\!\cdots\!97}a^{25}+\frac{13\!\cdots\!95}{81\!\cdots\!97}a^{24}+\frac{31\!\cdots\!21}{24\!\cdots\!91}a^{23}-\frac{17\!\cdots\!50}{24\!\cdots\!91}a^{22}+\frac{62\!\cdots\!19}{24\!\cdots\!91}a^{21}+\frac{12\!\cdots\!29}{81\!\cdots\!97}a^{20}+\frac{27\!\cdots\!72}{81\!\cdots\!97}a^{19}+\frac{19\!\cdots\!74}{81\!\cdots\!97}a^{18}+\frac{24\!\cdots\!19}{72\!\cdots\!73}a^{17}+\frac{39\!\cdots\!59}{72\!\cdots\!73}a^{16}+\frac{91\!\cdots\!39}{72\!\cdots\!73}a^{15}+\frac{51\!\cdots\!85}{72\!\cdots\!73}a^{14}+\frac{25\!\cdots\!08}{72\!\cdots\!73}a^{13}-\frac{66\!\cdots\!65}{72\!\cdots\!73}a^{12}-\frac{34\!\cdots\!64}{72\!\cdots\!73}a^{11}+\frac{26\!\cdots\!12}{72\!\cdots\!73}a^{10}-\frac{38\!\cdots\!39}{72\!\cdots\!73}a^{9}+\frac{60\!\cdots\!65}{27\!\cdots\!99}a^{8}+\frac{48\!\cdots\!04}{81\!\cdots\!97}a^{7}-\frac{16\!\cdots\!89}{81\!\cdots\!97}a^{6}-\frac{56\!\cdots\!65}{24\!\cdots\!91}a^{5}+\frac{61\!\cdots\!32}{24\!\cdots\!91}a^{4}+\frac{88\!\cdots\!31}{45\!\cdots\!47}a^{3}+\frac{69\!\cdots\!11}{24\!\cdots\!91}a^{2}+\frac{10\!\cdots\!04}{24\!\cdots\!91}a+\frac{30\!\cdots\!22}{45\!\cdots\!47}$, $\frac{76\!\cdots\!08}{72\!\cdots\!73}a^{35}-\frac{49\!\cdots\!23}{72\!\cdots\!73}a^{34}-\frac{45\!\cdots\!88}{72\!\cdots\!73}a^{33}+\frac{12\!\cdots\!00}{72\!\cdots\!73}a^{32}-\frac{24\!\cdots\!15}{72\!\cdots\!73}a^{31}-\frac{10\!\cdots\!84}{72\!\cdots\!73}a^{30}+\frac{43\!\cdots\!73}{72\!\cdots\!73}a^{29}+\frac{75\!\cdots\!62}{72\!\cdots\!73}a^{28}-\frac{23\!\cdots\!43}{72\!\cdots\!73}a^{27}+\frac{33\!\cdots\!21}{81\!\cdots\!97}a^{26}+\frac{90\!\cdots\!63}{27\!\cdots\!99}a^{25}-\frac{34\!\cdots\!94}{81\!\cdots\!97}a^{24}+\frac{62\!\cdots\!16}{24\!\cdots\!91}a^{23}-\frac{21\!\cdots\!56}{24\!\cdots\!91}a^{22}+\frac{36\!\cdots\!05}{24\!\cdots\!91}a^{21}+\frac{89\!\cdots\!92}{27\!\cdots\!99}a^{20}-\frac{50\!\cdots\!53}{81\!\cdots\!97}a^{19}+\frac{15\!\cdots\!00}{81\!\cdots\!97}a^{18}-\frac{11\!\cdots\!83}{72\!\cdots\!73}a^{17}-\frac{12\!\cdots\!18}{72\!\cdots\!73}a^{16}+\frac{99\!\cdots\!28}{72\!\cdots\!73}a^{15}-\frac{64\!\cdots\!05}{72\!\cdots\!73}a^{14}+\frac{55\!\cdots\!36}{72\!\cdots\!73}a^{13}+\frac{86\!\cdots\!68}{72\!\cdots\!73}a^{12}-\frac{76\!\cdots\!62}{72\!\cdots\!73}a^{11}+\frac{99\!\cdots\!45}{72\!\cdots\!73}a^{10}+\frac{14\!\cdots\!30}{72\!\cdots\!73}a^{9}-\frac{44\!\cdots\!23}{81\!\cdots\!97}a^{8}+\frac{56\!\cdots\!31}{90\!\cdots\!33}a^{7}-\frac{63\!\cdots\!73}{81\!\cdots\!97}a^{6}-\frac{20\!\cdots\!56}{24\!\cdots\!91}a^{5}+\frac{44\!\cdots\!13}{24\!\cdots\!91}a^{4}-\frac{45\!\cdots\!46}{24\!\cdots\!91}a^{3}-\frac{12\!\cdots\!18}{24\!\cdots\!91}a^{2}-\frac{60\!\cdots\!19}{24\!\cdots\!91}a+\frac{22\!\cdots\!30}{45\!\cdots\!47}$, $\frac{51\!\cdots\!94}{72\!\cdots\!73}a^{35}-\frac{12\!\cdots\!93}{24\!\cdots\!91}a^{34}+\frac{74\!\cdots\!62}{24\!\cdots\!91}a^{33}+\frac{94\!\cdots\!51}{96\!\cdots\!89}a^{32}-\frac{23\!\cdots\!39}{81\!\cdots\!97}a^{31}-\frac{10\!\cdots\!02}{27\!\cdots\!99}a^{30}+\frac{23\!\cdots\!43}{72\!\cdots\!73}a^{29}-\frac{57\!\cdots\!90}{24\!\cdots\!91}a^{28}-\frac{23\!\cdots\!61}{24\!\cdots\!91}a^{27}+\frac{16\!\cdots\!83}{81\!\cdots\!97}a^{26}-\frac{22\!\cdots\!97}{27\!\cdots\!99}a^{25}+\frac{12\!\cdots\!82}{27\!\cdots\!99}a^{24}+\frac{83\!\cdots\!40}{24\!\cdots\!91}a^{23}-\frac{96\!\cdots\!49}{27\!\cdots\!99}a^{22}+\frac{93\!\cdots\!38}{81\!\cdots\!97}a^{21}+\frac{25\!\cdots\!94}{90\!\cdots\!33}a^{20}-\frac{45\!\cdots\!19}{81\!\cdots\!97}a^{19}+\frac{80\!\cdots\!97}{90\!\cdots\!33}a^{18}-\frac{31\!\cdots\!50}{72\!\cdots\!73}a^{17}+\frac{35\!\cdots\!76}{24\!\cdots\!91}a^{16}+\frac{10\!\cdots\!99}{24\!\cdots\!91}a^{15}-\frac{11\!\cdots\!27}{72\!\cdots\!73}a^{14}+\frac{97\!\cdots\!00}{90\!\cdots\!33}a^{13}-\frac{67\!\cdots\!40}{81\!\cdots\!97}a^{12}-\frac{16\!\cdots\!14}{72\!\cdots\!73}a^{11}+\frac{19\!\cdots\!14}{45\!\cdots\!47}a^{10}-\frac{53\!\cdots\!61}{24\!\cdots\!91}a^{9}+\frac{58\!\cdots\!05}{81\!\cdots\!97}a^{8}+\frac{16\!\cdots\!24}{81\!\cdots\!97}a^{7}-\frac{23\!\cdots\!82}{81\!\cdots\!97}a^{6}-\frac{26\!\cdots\!00}{24\!\cdots\!91}a^{5}+\frac{36\!\cdots\!71}{90\!\cdots\!33}a^{4}+\frac{67\!\cdots\!70}{27\!\cdots\!99}a^{3}-\frac{35\!\cdots\!92}{24\!\cdots\!91}a^{2}-\frac{41\!\cdots\!94}{81\!\cdots\!97}a+\frac{18\!\cdots\!62}{15\!\cdots\!49}$, $\frac{43\!\cdots\!18}{24\!\cdots\!91}a^{35}-\frac{12\!\cdots\!56}{81\!\cdots\!97}a^{34}+\frac{16\!\cdots\!93}{72\!\cdots\!73}a^{33}+\frac{17\!\cdots\!33}{81\!\cdots\!97}a^{32}-\frac{24\!\cdots\!91}{27\!\cdots\!99}a^{31}-\frac{36\!\cdots\!21}{72\!\cdots\!73}a^{30}+\frac{18\!\cdots\!55}{24\!\cdots\!91}a^{29}-\frac{34\!\cdots\!11}{27\!\cdots\!99}a^{28}-\frac{61\!\cdots\!20}{72\!\cdots\!73}a^{27}+\frac{42\!\cdots\!69}{81\!\cdots\!97}a^{26}-\frac{19\!\cdots\!03}{27\!\cdots\!99}a^{25}+\frac{17\!\cdots\!64}{81\!\cdots\!97}a^{24}-\frac{13\!\cdots\!29}{81\!\cdots\!97}a^{23}-\frac{52\!\cdots\!38}{81\!\cdots\!97}a^{22}+\frac{83\!\cdots\!13}{24\!\cdots\!91}a^{21}-\frac{75\!\cdots\!72}{27\!\cdots\!99}a^{20}+\frac{34\!\cdots\!02}{81\!\cdots\!97}a^{19}+\frac{45\!\cdots\!57}{27\!\cdots\!99}a^{18}-\frac{60\!\cdots\!12}{24\!\cdots\!91}a^{17}+\frac{55\!\cdots\!97}{81\!\cdots\!97}a^{16}+\frac{25\!\cdots\!71}{72\!\cdots\!73}a^{15}-\frac{29\!\cdots\!22}{81\!\cdots\!97}a^{14}+\frac{26\!\cdots\!55}{81\!\cdots\!97}a^{13}-\frac{38\!\cdots\!11}{72\!\cdots\!73}a^{12}+\frac{25\!\cdots\!43}{24\!\cdots\!91}a^{11}+\frac{60\!\cdots\!32}{81\!\cdots\!97}a^{10}-\frac{76\!\cdots\!70}{72\!\cdots\!73}a^{9}+\frac{91\!\cdots\!43}{27\!\cdots\!99}a^{8}+\frac{13\!\cdots\!75}{90\!\cdots\!33}a^{7}-\frac{18\!\cdots\!58}{27\!\cdots\!99}a^{6}+\frac{35\!\cdots\!13}{81\!\cdots\!97}a^{5}+\frac{64\!\cdots\!56}{27\!\cdots\!99}a^{4}+\frac{54\!\cdots\!93}{24\!\cdots\!91}a^{3}-\frac{25\!\cdots\!17}{81\!\cdots\!97}a^{2}-\frac{16\!\cdots\!85}{27\!\cdots\!99}a-\frac{42\!\cdots\!83}{45\!\cdots\!47}$, $\frac{18\!\cdots\!93}{72\!\cdots\!73}a^{35}-\frac{47\!\cdots\!92}{24\!\cdots\!91}a^{34}+\frac{49\!\cdots\!14}{24\!\cdots\!91}a^{33}+\frac{23\!\cdots\!49}{72\!\cdots\!73}a^{32}-\frac{26\!\cdots\!50}{24\!\cdots\!91}a^{31}-\frac{15\!\cdots\!33}{24\!\cdots\!91}a^{30}+\frac{70\!\cdots\!83}{72\!\cdots\!73}a^{29}-\frac{29\!\cdots\!17}{24\!\cdots\!91}a^{28}-\frac{34\!\cdots\!14}{24\!\cdots\!91}a^{27}+\frac{15\!\cdots\!92}{27\!\cdots\!99}a^{26}-\frac{69\!\cdots\!65}{90\!\cdots\!33}a^{25}+\frac{24\!\cdots\!99}{81\!\cdots\!97}a^{24}-\frac{18\!\cdots\!42}{24\!\cdots\!91}a^{23}-\frac{68\!\cdots\!49}{81\!\cdots\!97}a^{22}+\frac{11\!\cdots\!43}{27\!\cdots\!99}a^{21}-\frac{14\!\cdots\!58}{81\!\cdots\!97}a^{20}+\frac{60\!\cdots\!82}{81\!\cdots\!97}a^{19}+\frac{24\!\cdots\!87}{90\!\cdots\!33}a^{18}-\frac{12\!\cdots\!82}{72\!\cdots\!73}a^{17}+\frac{24\!\cdots\!78}{24\!\cdots\!91}a^{16}+\frac{22\!\cdots\!29}{24\!\cdots\!91}a^{15}+\frac{32\!\cdots\!86}{72\!\cdots\!73}a^{14}+\frac{23\!\cdots\!75}{45\!\cdots\!47}a^{13}-\frac{12\!\cdots\!84}{24\!\cdots\!91}a^{12}-\frac{21\!\cdots\!10}{72\!\cdots\!73}a^{11}+\frac{12\!\cdots\!32}{24\!\cdots\!91}a^{10}-\frac{35\!\cdots\!08}{24\!\cdots\!91}a^{9}+\frac{37\!\cdots\!19}{81\!\cdots\!97}a^{8}+\frac{32\!\cdots\!56}{81\!\cdots\!97}a^{7}-\frac{13\!\cdots\!53}{27\!\cdots\!99}a^{6}+\frac{10\!\cdots\!40}{24\!\cdots\!91}a^{5}-\frac{15\!\cdots\!15}{81\!\cdots\!97}a^{4}+\frac{31\!\cdots\!88}{81\!\cdots\!97}a^{3}-\frac{16\!\cdots\!53}{24\!\cdots\!91}a^{2}+\frac{52\!\cdots\!16}{81\!\cdots\!97}a-\frac{29\!\cdots\!69}{15\!\cdots\!49}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1230094119602891.2 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{18}\cdot 1230094119602891.2 \cdot 11069217}{2\cdot\sqrt{1156487458975635277051336992772878401742742331832969956377584210296826837}}\cr\approx \mathstrut & 1.47466174714931 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^36 - 9*x^35 + 18*x^34 + 114*x^33 - 594*x^32 + 297*x^31 + 4254*x^30 - 9936*x^29 - 234*x^28 + 32299*x^27 - 58959*x^26 + 147294*x^25 - 168765*x^24 - 310914*x^23 + 2148039*x^22 - 2780889*x^21 + 3302046*x^20 + 7764570*x^19 - 20060275*x^18 + 46453752*x^17 - 5674194*x^16 - 33922617*x^15 + 189154899*x^14 - 418326174*x^13 + 239017128*x^12 + 371741373*x^11 - 836274987*x^10 + 2255635343*x^9 - 421255737*x^8 - 4539381993*x^7 + 4681659129*x^6 - 179083917*x^5 + 666088029*x^4 - 2003355207*x^3 + 1258558695*x^2 - 261336159*x + 510583503)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^36 - 9*x^35 + 18*x^34 + 114*x^33 - 594*x^32 + 297*x^31 + 4254*x^30 - 9936*x^29 - 234*x^28 + 32299*x^27 - 58959*x^26 + 147294*x^25 - 168765*x^24 - 310914*x^23 + 2148039*x^22 - 2780889*x^21 + 3302046*x^20 + 7764570*x^19 - 20060275*x^18 + 46453752*x^17 - 5674194*x^16 - 33922617*x^15 + 189154899*x^14 - 418326174*x^13 + 239017128*x^12 + 371741373*x^11 - 836274987*x^10 + 2255635343*x^9 - 421255737*x^8 - 4539381993*x^7 + 4681659129*x^6 - 179083917*x^5 + 666088029*x^4 - 2003355207*x^3 + 1258558695*x^2 - 261336159*x + 510583503, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^36 - 9*x^35 + 18*x^34 + 114*x^33 - 594*x^32 + 297*x^31 + 4254*x^30 - 9936*x^29 - 234*x^28 + 32299*x^27 - 58959*x^26 + 147294*x^25 - 168765*x^24 - 310914*x^23 + 2148039*x^22 - 2780889*x^21 + 3302046*x^20 + 7764570*x^19 - 20060275*x^18 + 46453752*x^17 - 5674194*x^16 - 33922617*x^15 + 189154899*x^14 - 418326174*x^13 + 239017128*x^12 + 371741373*x^11 - 836274987*x^10 + 2255635343*x^9 - 421255737*x^8 - 4539381993*x^7 + 4681659129*x^6 - 179083917*x^5 + 666088029*x^4 - 2003355207*x^3 + 1258558695*x^2 - 261336159*x + 510583503);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - 9*x^35 + 18*x^34 + 114*x^33 - 594*x^32 + 297*x^31 + 4254*x^30 - 9936*x^29 - 234*x^28 + 32299*x^27 - 58959*x^26 + 147294*x^25 - 168765*x^24 - 310914*x^23 + 2148039*x^22 - 2780889*x^21 + 3302046*x^20 + 7764570*x^19 - 20060275*x^18 + 46453752*x^17 - 5674194*x^16 - 33922617*x^15 + 189154899*x^14 - 418326174*x^13 + 239017128*x^12 + 371741373*x^11 - 836274987*x^10 + 2255635343*x^9 - 421255737*x^8 - 4539381993*x^7 + 4681659129*x^6 - 179083917*x^5 + 666088029*x^4 - 2003355207*x^3 + 1258558695*x^2 - 261336159*x + 510583503);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{36}$ (as 36T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 36
The 36 conjugacy class representatives for $C_{36}$
Character table for $C_{36}$

Intermediate fields

\(\Q(\sqrt{13}) \), \(\Q(\zeta_{9})^+\), 4.0.2197.1, 6.6.14414517.1, \(\Q(\zeta_{27})^+\), 12.0.456488925854205933.1, 18.18.10443002414754749649962321483613.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $36$ R $36$ $36$ $36$ R ${\href{/padicField/17.6.0.1}{6} }^{6}$ ${\href{/padicField/19.12.0.1}{12} }^{3}$ $18^{2}$ ${\href{/padicField/29.9.0.1}{9} }^{4}$ $36$ ${\href{/padicField/37.12.0.1}{12} }^{3}$ $36$ $18^{2}$ $36$ ${\href{/padicField/53.1.0.1}{1} }^{36}$ $36$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.9.22.8$x^{9} + 24 x^{6} + 18 x^{5} + 9 x^{3} + 3$$9$$1$$22$$C_9$$[2, 3]$
3.9.22.8$x^{9} + 24 x^{6} + 18 x^{5} + 9 x^{3} + 3$$9$$1$$22$$C_9$$[2, 3]$
3.9.22.8$x^{9} + 24 x^{6} + 18 x^{5} + 9 x^{3} + 3$$9$$1$$22$$C_9$$[2, 3]$
3.9.22.8$x^{9} + 24 x^{6} + 18 x^{5} + 9 x^{3} + 3$$9$$1$$22$$C_9$$[2, 3]$
\(13\) Copy content Toggle raw display Deg $36$$4$$9$$27$