Properties

Label 36.0.11457305950...0625.1
Degree $36$
Signature $[0, 18]$
Discriminant $5^{18}\cdot 19^{34}$
Root discriminant $36.07$
Ramified primes $5, 19$
Class number $76$ (GRH)
Class group $[76]$ (GRH)
Galois group $C_2\times C_{18}$ (as 36T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, -2584, 1597, -987, 610, -377, 233, -144, 89, -55, 34, -21, 13, -8, 5, -3, 2, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^36 - x^35 + 2*x^34 - 3*x^33 + 5*x^32 - 8*x^31 + 13*x^30 - 21*x^29 + 34*x^28 - 55*x^27 + 89*x^26 - 144*x^25 + 233*x^24 - 377*x^23 + 610*x^22 - 987*x^21 + 1597*x^20 - 2584*x^19 + 4181*x^18 + 2584*x^17 + 1597*x^16 + 987*x^15 + 610*x^14 + 377*x^13 + 233*x^12 + 144*x^11 + 89*x^10 + 55*x^9 + 34*x^8 + 21*x^7 + 13*x^6 + 8*x^5 + 5*x^4 + 3*x^3 + 2*x^2 + x + 1)
 
gp: K = bnfinit(x^36 - x^35 + 2*x^34 - 3*x^33 + 5*x^32 - 8*x^31 + 13*x^30 - 21*x^29 + 34*x^28 - 55*x^27 + 89*x^26 - 144*x^25 + 233*x^24 - 377*x^23 + 610*x^22 - 987*x^21 + 1597*x^20 - 2584*x^19 + 4181*x^18 + 2584*x^17 + 1597*x^16 + 987*x^15 + 610*x^14 + 377*x^13 + 233*x^12 + 144*x^11 + 89*x^10 + 55*x^9 + 34*x^8 + 21*x^7 + 13*x^6 + 8*x^5 + 5*x^4 + 3*x^3 + 2*x^2 + x + 1, 1)
 

Normalized defining polynomial

\( x^{36} - x^{35} + 2 x^{34} - 3 x^{33} + 5 x^{32} - 8 x^{31} + 13 x^{30} - 21 x^{29} + 34 x^{28} - 55 x^{27} + 89 x^{26} - 144 x^{25} + 233 x^{24} - 377 x^{23} + 610 x^{22} - 987 x^{21} + 1597 x^{20} - 2584 x^{19} + 4181 x^{18} + 2584 x^{17} + 1597 x^{16} + 987 x^{15} + 610 x^{14} + 377 x^{13} + 233 x^{12} + 144 x^{11} + 89 x^{10} + 55 x^{9} + 34 x^{8} + 21 x^{7} + 13 x^{6} + 8 x^{5} + 5 x^{4} + 3 x^{3} + 2 x^{2} + x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $36$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 18]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(114573059505387793044837364496233492772337802886962890625=5^{18}\cdot 19^{34}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $36.07$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(95=5\cdot 19\)
Dirichlet character group:    $\lbrace$$\chi_{95}(1,·)$, $\chi_{95}(4,·)$, $\chi_{95}(6,·)$, $\chi_{95}(9,·)$, $\chi_{95}(11,·)$, $\chi_{95}(14,·)$, $\chi_{95}(16,·)$, $\chi_{95}(21,·)$, $\chi_{95}(24,·)$, $\chi_{95}(26,·)$, $\chi_{95}(29,·)$, $\chi_{95}(31,·)$, $\chi_{95}(34,·)$, $\chi_{95}(36,·)$, $\chi_{95}(39,·)$, $\chi_{95}(41,·)$, $\chi_{95}(44,·)$, $\chi_{95}(46,·)$, $\chi_{95}(49,·)$, $\chi_{95}(51,·)$, $\chi_{95}(54,·)$, $\chi_{95}(56,·)$, $\chi_{95}(59,·)$, $\chi_{95}(61,·)$, $\chi_{95}(64,·)$, $\chi_{95}(66,·)$, $\chi_{95}(69,·)$, $\chi_{95}(71,·)$, $\chi_{95}(74,·)$, $\chi_{95}(79,·)$, $\chi_{95}(81,·)$, $\chi_{95}(84,·)$, $\chi_{95}(86,·)$, $\chi_{95}(89,·)$, $\chi_{95}(91,·)$, $\chi_{95}(94,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{4181} a^{19} - \frac{1597}{4181}$, $\frac{1}{4181} a^{20} - \frac{1597}{4181} a$, $\frac{1}{4181} a^{21} - \frac{1597}{4181} a^{2}$, $\frac{1}{4181} a^{22} - \frac{1597}{4181} a^{3}$, $\frac{1}{4181} a^{23} - \frac{1597}{4181} a^{4}$, $\frac{1}{4181} a^{24} - \frac{1597}{4181} a^{5}$, $\frac{1}{4181} a^{25} - \frac{1597}{4181} a^{6}$, $\frac{1}{4181} a^{26} - \frac{1597}{4181} a^{7}$, $\frac{1}{4181} a^{27} - \frac{1597}{4181} a^{8}$, $\frac{1}{4181} a^{28} - \frac{1597}{4181} a^{9}$, $\frac{1}{4181} a^{29} - \frac{1597}{4181} a^{10}$, $\frac{1}{4181} a^{30} - \frac{1597}{4181} a^{11}$, $\frac{1}{4181} a^{31} - \frac{1597}{4181} a^{12}$, $\frac{1}{4181} a^{32} - \frac{1597}{4181} a^{13}$, $\frac{1}{4181} a^{33} - \frac{1597}{4181} a^{14}$, $\frac{1}{4181} a^{34} - \frac{1597}{4181} a^{15}$, $\frac{1}{4181} a^{35} - \frac{1597}{4181} a^{16}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{76}$, which has order $76$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $17$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{987}{4181} a^{35} - \frac{9227465}{4181} a^{16} \) (order $38$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3431432369157.3267 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{18}$ (as 36T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 36
The 36 conjugacy class representatives for $C_2\times C_{18}$
Character table for $C_2\times C_{18}$ is not computed

Intermediate fields

\(\Q(\sqrt{-19}) \), \(\Q(\sqrt{-95}) \), \(\Q(\sqrt{5}) \), 3.3.361.1, \(\Q(\sqrt{5}, \sqrt{-19})\), 6.0.2476099.1, 6.0.309512375.1, 6.6.16290125.1, \(\Q(\zeta_{19})^+\), 12.0.95797910278140625.1, \(\Q(\zeta_{19})\), 18.0.10703880581610941769412109375.1, 18.18.563362135874260093126953125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $18^{2}$ $18^{2}$ R ${\href{/LocalNumberField/7.6.0.1}{6} }^{6}$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{12}$ $18^{2}$ $18^{2}$ R $18^{2}$ $18^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{18}$ $18^{2}$ $18^{2}$ $18^{2}$ $18^{2}$ $18^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
5Data not computed
19Data not computed