# Oscar code for working with number field 36.0.11349174172096312401159270887667863929976078528910955905024.1 # If you have not already loaded the Oscar package, you should type "using Oscar;" before running the code below. # Some of these functions may take a long time to compile (this depends on the state of your Julia REPL), and/or to execute (this depends on the field). # Define the number field: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - 3*x^35 - 9*x^34 + 45*x^33 - 6*x^32 - 423*x^31 + 987*x^30 + 1500*x^29 - 7605*x^28 + 1541*x^27 + 30849*x^26 - 54360*x^25 - 60048*x^24 + 185232*x^23 + 256266*x^22 - 152940*x^21 - 1073577*x^20 - 336708*x^19 + 2425303*x^18 + 1698282*x^17 - 2128815*x^16 - 3681504*x^15 - 275778*x^14 + 5895882*x^13 + 1320516*x^12 - 4471362*x^11 + 1316007*x^10 + 878499*x^9 - 806031*x^8 + 4374*x^7 + 235467*x^6 - 78003*x^5 - 16038*x^4 + 16767*x^3 - 2187*x^2 - 2187*x + 729) # Defining polynomial: defining_polynomial(K) # Degree over Q: degree(K) # Signature: signature(K) # Discriminant: OK = ring_of_integers(K); discriminant(OK) # Ramified primes: prime_divisors(discriminant((OK))) # Autmorphisms: automorphisms(K) # Integral basis: basis(OK) # Class group: class_group(K) # Unit group: UK, fUK = unit_group(OK) # Unit rank: rank(UK) # Generator for roots of unity: torsion_units_generator(OK) # Fundamental units: [K(fUK(a)) for a in gens(UK)] # Regulator: regulator(K) # Analytic class number formula: # self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - 3*x^35 - 9*x^34 + 45*x^33 - 6*x^32 - 423*x^31 + 987*x^30 + 1500*x^29 - 7605*x^28 + 1541*x^27 + 30849*x^26 - 54360*x^25 - 60048*x^24 + 185232*x^23 + 256266*x^22 - 152940*x^21 - 1073577*x^20 - 336708*x^19 + 2425303*x^18 + 1698282*x^17 - 2128815*x^16 - 3681504*x^15 - 275778*x^14 + 5895882*x^13 + 1320516*x^12 - 4471362*x^11 + 1316007*x^10 + 878499*x^9 - 806031*x^8 + 4374*x^7 + 235467*x^6 - 78003*x^5 - 16038*x^4 + 16767*x^3 - 2187*x^2 - 2187*x + 729); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK)))) # Intermediate fields: subfields(K)[2:end-1] # Galois group: G, Gtx = galois_group(K); G, transitive_group_identification(G) # Frobenius cycle types: # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]