Properties

Label 36.0.113...125.1
Degree $36$
Signature $[0, 18]$
Discriminant $1.134\times 10^{69}$
Root discriminant \(82.83\)
Ramified primes $5,37$
Class number $462217$ (GRH)
Class group [7, 66031] (GRH)
Galois group $C_{36}$ (as 36T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^36 - x^35 + 17*x^34 - 22*x^33 + 217*x^32 - 92*x^31 + 2305*x^30 - 548*x^29 + 24025*x^28 - 9791*x^27 + 124680*x^26 - 59713*x^25 + 544902*x^24 - 274866*x^23 + 2154833*x^22 - 1067627*x^21 + 7334189*x^20 - 3450543*x^19 + 14127290*x^18 - 3108766*x^17 + 23851200*x^16 + 13376744*x^15 + 25175709*x^14 + 9088911*x^13 + 23034602*x^12 + 232605*x^11 + 2582197*x^10 + 124075*x^9 + 235179*x^8 - 72948*x^7 + 30848*x^6 - 6008*x^5 + 2425*x^4 - 368*x^3 + 56*x^2 - 7*x + 1)
 
gp: K = bnfinit(y^36 - y^35 + 17*y^34 - 22*y^33 + 217*y^32 - 92*y^31 + 2305*y^30 - 548*y^29 + 24025*y^28 - 9791*y^27 + 124680*y^26 - 59713*y^25 + 544902*y^24 - 274866*y^23 + 2154833*y^22 - 1067627*y^21 + 7334189*y^20 - 3450543*y^19 + 14127290*y^18 - 3108766*y^17 + 23851200*y^16 + 13376744*y^15 + 25175709*y^14 + 9088911*y^13 + 23034602*y^12 + 232605*y^11 + 2582197*y^10 + 124075*y^9 + 235179*y^8 - 72948*y^7 + 30848*y^6 - 6008*y^5 + 2425*y^4 - 368*y^3 + 56*y^2 - 7*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^36 - x^35 + 17*x^34 - 22*x^33 + 217*x^32 - 92*x^31 + 2305*x^30 - 548*x^29 + 24025*x^28 - 9791*x^27 + 124680*x^26 - 59713*x^25 + 544902*x^24 - 274866*x^23 + 2154833*x^22 - 1067627*x^21 + 7334189*x^20 - 3450543*x^19 + 14127290*x^18 - 3108766*x^17 + 23851200*x^16 + 13376744*x^15 + 25175709*x^14 + 9088911*x^13 + 23034602*x^12 + 232605*x^11 + 2582197*x^10 + 124075*x^9 + 235179*x^8 - 72948*x^7 + 30848*x^6 - 6008*x^5 + 2425*x^4 - 368*x^3 + 56*x^2 - 7*x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - x^35 + 17*x^34 - 22*x^33 + 217*x^32 - 92*x^31 + 2305*x^30 - 548*x^29 + 24025*x^28 - 9791*x^27 + 124680*x^26 - 59713*x^25 + 544902*x^24 - 274866*x^23 + 2154833*x^22 - 1067627*x^21 + 7334189*x^20 - 3450543*x^19 + 14127290*x^18 - 3108766*x^17 + 23851200*x^16 + 13376744*x^15 + 25175709*x^14 + 9088911*x^13 + 23034602*x^12 + 232605*x^11 + 2582197*x^10 + 124075*x^9 + 235179*x^8 - 72948*x^7 + 30848*x^6 - 6008*x^5 + 2425*x^4 - 368*x^3 + 56*x^2 - 7*x + 1)
 

\( x^{36} - x^{35} + 17 x^{34} - 22 x^{33} + 217 x^{32} - 92 x^{31} + 2305 x^{30} - 548 x^{29} + 24025 x^{28} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $36$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 18]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(1134084166835624937413663701523229292665702790961273014545440673828125\) \(\medspace = 5^{27}\cdot 37^{32}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(82.83\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{3/4}37^{8/9}\approx 82.82941447304844$
Ramified primes:   \(5\), \(37\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{5}) \)
$\card{ \Gal(K/\Q) }$:  $36$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(185=5\cdot 37\)
Dirichlet character group:    $\lbrace$$\chi_{185}(1,·)$, $\chi_{185}(7,·)$, $\chi_{185}(9,·)$, $\chi_{185}(12,·)$, $\chi_{185}(16,·)$, $\chi_{185}(149,·)$, $\chi_{185}(26,·)$, $\chi_{185}(157,·)$, $\chi_{185}(158,·)$, $\chi_{185}(33,·)$, $\chi_{185}(34,·)$, $\chi_{185}(164,·)$, $\chi_{185}(38,·)$, $\chi_{185}(44,·)$, $\chi_{185}(46,·)$, $\chi_{185}(47,·)$, $\chi_{185}(49,·)$, $\chi_{185}(181,·)$, $\chi_{185}(182,·)$, $\chi_{185}(137,·)$, $\chi_{185}(53,·)$, $\chi_{185}(71,·)$, $\chi_{185}(81,·)$, $\chi_{185}(83,·)$, $\chi_{185}(84,·)$, $\chi_{185}(86,·)$, $\chi_{185}(144,·)$, $\chi_{185}(123,·)$, $\chi_{185}(107,·)$, $\chi_{185}(108,·)$, $\chi_{185}(174,·)$, $\chi_{185}(112,·)$, $\chi_{185}(118,·)$, $\chi_{185}(121,·)$, $\chi_{185}(63,·)$, $\chi_{185}(127,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{131072}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $\frac{1}{31}a^{22}+\frac{13}{31}a^{21}+\frac{15}{31}a^{20}-\frac{1}{31}a^{19}+\frac{13}{31}a^{18}+\frac{15}{31}a^{17}+\frac{14}{31}a^{16}-\frac{9}{31}a^{15}-\frac{14}{31}a^{14}+\frac{14}{31}a^{13}+\frac{8}{31}a^{12}+\frac{6}{31}a^{11}+\frac{12}{31}a^{10}+\frac{9}{31}a^{9}-\frac{9}{31}a^{8}-\frac{13}{31}a^{7}-\frac{13}{31}a^{6}-\frac{6}{31}a^{5}-\frac{9}{31}a^{4}-\frac{10}{31}a^{3}-\frac{7}{31}a^{2}+\frac{13}{31}a-\frac{11}{31}$, $\frac{1}{31}a^{23}+\frac{1}{31}a^{21}-\frac{10}{31}a^{20}-\frac{5}{31}a^{19}+\frac{1}{31}a^{18}+\frac{5}{31}a^{17}-\frac{5}{31}a^{16}+\frac{10}{31}a^{15}+\frac{10}{31}a^{14}+\frac{12}{31}a^{13}-\frac{5}{31}a^{12}-\frac{4}{31}a^{11}+\frac{8}{31}a^{10}-\frac{2}{31}a^{9}+\frac{11}{31}a^{8}+\frac{1}{31}a^{7}+\frac{8}{31}a^{6}+\frac{7}{31}a^{5}+\frac{14}{31}a^{4}-\frac{1}{31}a^{3}+\frac{11}{31}a^{2}+\frac{6}{31}a-\frac{12}{31}$, $\frac{1}{31}a^{24}+\frac{8}{31}a^{21}+\frac{11}{31}a^{20}+\frac{2}{31}a^{19}-\frac{8}{31}a^{18}+\frac{11}{31}a^{17}-\frac{4}{31}a^{16}-\frac{12}{31}a^{15}-\frac{5}{31}a^{14}+\frac{12}{31}a^{13}-\frac{12}{31}a^{12}+\frac{2}{31}a^{11}-\frac{14}{31}a^{10}+\frac{2}{31}a^{9}+\frac{10}{31}a^{8}-\frac{10}{31}a^{7}-\frac{11}{31}a^{6}-\frac{11}{31}a^{5}+\frac{8}{31}a^{4}-\frac{10}{31}a^{3}+\frac{13}{31}a^{2}+\frac{6}{31}a+\frac{11}{31}$, $\frac{1}{31}a^{25}+\frac{6}{31}a^{20}+\frac{5}{31}a^{15}-\frac{1}{31}a^{10}-\frac{6}{31}a^{5}-\frac{5}{31}$, $\frac{1}{31}a^{26}+\frac{6}{31}a^{21}+\frac{5}{31}a^{16}-\frac{1}{31}a^{11}-\frac{6}{31}a^{6}-\frac{5}{31}a$, $\frac{1}{31}a^{27}+\frac{15}{31}a^{21}+\frac{3}{31}a^{20}+\frac{6}{31}a^{19}+\frac{15}{31}a^{18}+\frac{8}{31}a^{17}+\frac{9}{31}a^{16}-\frac{8}{31}a^{15}-\frac{9}{31}a^{14}+\frac{9}{31}a^{13}+\frac{13}{31}a^{12}-\frac{5}{31}a^{11}-\frac{10}{31}a^{10}+\frac{8}{31}a^{9}-\frac{8}{31}a^{8}+\frac{10}{31}a^{7}-\frac{15}{31}a^{6}+\frac{5}{31}a^{5}-\frac{8}{31}a^{4}-\frac{2}{31}a^{3}+\frac{6}{31}a^{2}+\frac{15}{31}a+\frac{4}{31}$, $\frac{1}{31}a^{28}-\frac{6}{31}a^{21}-\frac{2}{31}a^{20}-\frac{1}{31}a^{19}-\frac{1}{31}a^{18}+\frac{1}{31}a^{17}-\frac{1}{31}a^{16}+\frac{2}{31}a^{15}+\frac{2}{31}a^{14}-\frac{11}{31}a^{13}-\frac{1}{31}a^{12}-\frac{7}{31}a^{11}+\frac{14}{31}a^{10}+\frac{12}{31}a^{9}-\frac{10}{31}a^{8}-\frac{6}{31}a^{7}+\frac{14}{31}a^{6}-\frac{11}{31}a^{5}+\frac{9}{31}a^{4}+\frac{1}{31}a^{3}-\frac{4}{31}a^{2}-\frac{5}{31}a+\frac{10}{31}$, $\frac{1}{31}a^{29}+\frac{14}{31}a^{21}-\frac{4}{31}a^{20}-\frac{7}{31}a^{19}-\frac{14}{31}a^{18}-\frac{4}{31}a^{17}-\frac{7}{31}a^{16}+\frac{10}{31}a^{15}-\frac{2}{31}a^{14}-\frac{10}{31}a^{13}+\frac{10}{31}a^{12}-\frac{12}{31}a^{11}-\frac{9}{31}a^{10}+\frac{13}{31}a^{9}+\frac{2}{31}a^{8}-\frac{2}{31}a^{7}+\frac{4}{31}a^{6}+\frac{4}{31}a^{5}+\frac{9}{31}a^{4}-\frac{2}{31}a^{3}+\frac{15}{31}a^{2}-\frac{5}{31}a-\frac{4}{31}$, $\frac{1}{31}a^{30}-\frac{1}{31}$, $\frac{1}{31}a^{31}-\frac{1}{31}a$, $\frac{1}{1333}a^{32}+\frac{12}{1333}a^{31}+\frac{4}{1333}a^{30}-\frac{16}{1333}a^{29}+\frac{17}{1333}a^{28}-\frac{11}{1333}a^{27}+\frac{6}{1333}a^{26}+\frac{10}{1333}a^{25}-\frac{18}{1333}a^{24}+\frac{18}{1333}a^{23}+\frac{17}{1333}a^{22}-\frac{174}{1333}a^{21}+\frac{523}{1333}a^{20}+\frac{196}{1333}a^{19}+\frac{146}{1333}a^{18}+\frac{574}{1333}a^{17}-\frac{343}{1333}a^{16}-\frac{55}{1333}a^{15}+\frac{383}{1333}a^{14}-\frac{601}{1333}a^{13}-\frac{182}{1333}a^{12}+\frac{54}{1333}a^{11}-\frac{251}{1333}a^{10}-\frac{569}{1333}a^{9}-\frac{13}{31}a^{8}-\frac{513}{1333}a^{7}-\frac{103}{1333}a^{6}+\frac{414}{1333}a^{5}+\frac{238}{1333}a^{4}+\frac{652}{1333}a^{3}+\frac{524}{1333}a^{2}-\frac{487}{1333}a-\frac{2}{43}$, $\frac{1}{35\!\cdots\!63}a^{33}-\frac{37\!\cdots\!64}{35\!\cdots\!63}a^{32}-\frac{52\!\cdots\!59}{35\!\cdots\!63}a^{31}+\frac{46\!\cdots\!46}{35\!\cdots\!63}a^{30}+\frac{32\!\cdots\!24}{35\!\cdots\!63}a^{29}-\frac{51\!\cdots\!24}{35\!\cdots\!63}a^{28}+\frac{41\!\cdots\!65}{35\!\cdots\!63}a^{27}-\frac{54\!\cdots\!45}{35\!\cdots\!63}a^{26}-\frac{34\!\cdots\!98}{35\!\cdots\!63}a^{25}+\frac{45\!\cdots\!62}{35\!\cdots\!63}a^{24}-\frac{14\!\cdots\!00}{35\!\cdots\!63}a^{23}+\frac{70\!\cdots\!70}{35\!\cdots\!63}a^{22}+\frac{61\!\cdots\!61}{35\!\cdots\!63}a^{21}+\frac{13\!\cdots\!62}{35\!\cdots\!63}a^{20}+\frac{14\!\cdots\!46}{11\!\cdots\!73}a^{19}+\frac{74\!\cdots\!42}{35\!\cdots\!63}a^{18}+\frac{68\!\cdots\!42}{35\!\cdots\!63}a^{17}-\frac{62\!\cdots\!91}{35\!\cdots\!63}a^{16}-\frac{15\!\cdots\!65}{35\!\cdots\!63}a^{15}+\frac{17\!\cdots\!23}{35\!\cdots\!63}a^{14}+\frac{92\!\cdots\!31}{35\!\cdots\!63}a^{13}+\frac{12\!\cdots\!35}{35\!\cdots\!63}a^{12}+\frac{98\!\cdots\!22}{35\!\cdots\!63}a^{11}-\frac{54\!\cdots\!50}{35\!\cdots\!63}a^{10}-\frac{13\!\cdots\!89}{35\!\cdots\!63}a^{9}-\frac{12\!\cdots\!51}{35\!\cdots\!63}a^{8}+\frac{87\!\cdots\!23}{35\!\cdots\!63}a^{7}+\frac{15\!\cdots\!36}{35\!\cdots\!63}a^{6}-\frac{10\!\cdots\!87}{35\!\cdots\!63}a^{5}+\frac{15\!\cdots\!01}{35\!\cdots\!63}a^{4}+\frac{76\!\cdots\!87}{35\!\cdots\!63}a^{3}+\frac{12\!\cdots\!54}{35\!\cdots\!63}a^{2}-\frac{31\!\cdots\!79}{35\!\cdots\!63}a-\frac{15\!\cdots\!36}{35\!\cdots\!63}$, $\frac{1}{10\!\cdots\!53}a^{34}+\frac{6}{10\!\cdots\!53}a^{33}+\frac{19\!\cdots\!02}{10\!\cdots\!53}a^{32}+\frac{12\!\cdots\!00}{10\!\cdots\!53}a^{31}-\frac{94\!\cdots\!68}{10\!\cdots\!53}a^{30}-\frac{78\!\cdots\!87}{10\!\cdots\!53}a^{29}+\frac{63\!\cdots\!77}{10\!\cdots\!53}a^{28}-\frac{35\!\cdots\!92}{10\!\cdots\!53}a^{27}-\frac{15\!\cdots\!00}{10\!\cdots\!53}a^{26}+\frac{33\!\cdots\!51}{10\!\cdots\!53}a^{25}-\frac{10\!\cdots\!87}{10\!\cdots\!53}a^{24}-\frac{38\!\cdots\!48}{10\!\cdots\!53}a^{23}-\frac{14\!\cdots\!44}{10\!\cdots\!53}a^{22}-\frac{76\!\cdots\!40}{10\!\cdots\!53}a^{21}+\frac{17\!\cdots\!49}{10\!\cdots\!53}a^{20}+\frac{18\!\cdots\!93}{10\!\cdots\!53}a^{19}+\frac{51\!\cdots\!70}{10\!\cdots\!53}a^{18}+\frac{19\!\cdots\!49}{10\!\cdots\!53}a^{17}-\frac{12\!\cdots\!80}{10\!\cdots\!53}a^{16}+\frac{22\!\cdots\!44}{10\!\cdots\!53}a^{15}+\frac{73\!\cdots\!35}{10\!\cdots\!53}a^{14}-\frac{47\!\cdots\!60}{10\!\cdots\!53}a^{13}-\frac{16\!\cdots\!75}{10\!\cdots\!53}a^{12}-\frac{43\!\cdots\!28}{10\!\cdots\!53}a^{11}+\frac{51\!\cdots\!59}{10\!\cdots\!53}a^{10}-\frac{28\!\cdots\!21}{10\!\cdots\!53}a^{9}-\frac{11\!\cdots\!91}{10\!\cdots\!53}a^{8}+\frac{19\!\cdots\!49}{10\!\cdots\!53}a^{7}-\frac{13\!\cdots\!06}{10\!\cdots\!53}a^{6}-\frac{18\!\cdots\!30}{10\!\cdots\!53}a^{5}+\frac{17\!\cdots\!49}{10\!\cdots\!53}a^{4}+\frac{27\!\cdots\!81}{10\!\cdots\!53}a^{3}+\frac{38\!\cdots\!03}{10\!\cdots\!53}a^{2}+\frac{22\!\cdots\!26}{10\!\cdots\!53}a+\frac{52\!\cdots\!70}{10\!\cdots\!53}$, $\frac{1}{10\!\cdots\!53}a^{35}-\frac{12}{10\!\cdots\!53}a^{33}+\frac{20\!\cdots\!06}{10\!\cdots\!53}a^{32}-\frac{13\!\cdots\!96}{10\!\cdots\!53}a^{31}+\frac{10\!\cdots\!57}{10\!\cdots\!53}a^{30}+\frac{57\!\cdots\!68}{35\!\cdots\!63}a^{29}-\frac{89\!\cdots\!84}{10\!\cdots\!53}a^{28}-\frac{12\!\cdots\!47}{10\!\cdots\!53}a^{27}+\frac{12\!\cdots\!37}{10\!\cdots\!53}a^{26}+\frac{46\!\cdots\!46}{10\!\cdots\!53}a^{25}+\frac{16\!\cdots\!58}{10\!\cdots\!53}a^{24}+\frac{10\!\cdots\!35}{10\!\cdots\!53}a^{23}+\frac{32\!\cdots\!91}{10\!\cdots\!53}a^{22}+\frac{47\!\cdots\!10}{10\!\cdots\!53}a^{21}-\frac{39\!\cdots\!96}{10\!\cdots\!53}a^{20}-\frac{41\!\cdots\!70}{10\!\cdots\!53}a^{19}+\frac{61\!\cdots\!74}{10\!\cdots\!53}a^{18}-\frac{10\!\cdots\!49}{10\!\cdots\!53}a^{17}+\frac{37\!\cdots\!00}{10\!\cdots\!53}a^{16}+\frac{19\!\cdots\!26}{10\!\cdots\!53}a^{15}+\frac{25\!\cdots\!60}{10\!\cdots\!53}a^{14}+\frac{26\!\cdots\!46}{10\!\cdots\!53}a^{13}-\frac{36\!\cdots\!85}{10\!\cdots\!53}a^{12}+\frac{49\!\cdots\!80}{10\!\cdots\!53}a^{11}+\frac{14\!\cdots\!42}{10\!\cdots\!53}a^{10}-\frac{18\!\cdots\!14}{10\!\cdots\!53}a^{9}-\frac{37\!\cdots\!78}{10\!\cdots\!53}a^{8}-\frac{24\!\cdots\!56}{10\!\cdots\!53}a^{7}-\frac{27\!\cdots\!71}{10\!\cdots\!53}a^{6}+\frac{38\!\cdots\!78}{10\!\cdots\!53}a^{5}-\frac{46\!\cdots\!12}{10\!\cdots\!53}a^{4}+\frac{24\!\cdots\!96}{10\!\cdots\!53}a^{3}-\frac{34\!\cdots\!57}{10\!\cdots\!53}a^{2}+\frac{53\!\cdots\!02}{10\!\cdots\!53}a-\frac{37\!\cdots\!84}{10\!\cdots\!53}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $31$

Class group and class number

$C_{7}\times C_{66031}$, which has order $462217$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $17$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{406968674078587842386368787410359488588}{2557350540746879037352202339506170083971} a^{35} - \frac{347855718627033703917048171624948452749}{2557350540746879037352202339506170083971} a^{34} + \frac{6859816050354058386734346951668714862647}{2557350540746879037352202339506170083971} a^{33} - \frac{7949904987641604289144034799547357429398}{2557350540746879037352202339506170083971} a^{32} + \frac{87020515201398858251323134143355405632588}{2557350540746879037352202339506170083971} a^{31} - \frac{24641457230219375028958595059621196986928}{2557350540746879037352202339506170083971} a^{30} + \frac{932745914468298196266102402476638432002277}{2557350540746879037352202339506170083971} a^{29} - \frac{87030477734635050903047216306493642028654}{2557350540746879037352202339506170083971} a^{28} + \frac{9746165305192833056491849626700306307173828}{2557350540746879037352202339506170083971} a^{27} - \frac{2567090436153128788430983588005453321217833}{2557350540746879037352202339506170083971} a^{26} + \frac{50173505734925532399014477449443294242817081}{2557350540746879037352202339506170083971} a^{25} - \frac{16960644470709455716715068294258385485361334}{2557350540746879037352202339506170083971} a^{24} + \frac{218293635358173417748518570499178611789595653}{2557350540746879037352202339506170083971} a^{23} - \frac{79806508898327407000999822942800492820183570}{2557350540746879037352202339506170083971} a^{22} + \frac{861002517031256345811454984383759229976959075}{2557350540746879037352202339506170083971} a^{21} - \frac{9928848132779379245673805555169185714748829}{82495178733770291527490398048586131741} a^{20} + \frac{2922899263195285184506562840485339078533435284}{2557350540746879037352202339506170083971} a^{19} - \frac{973396918289334566019693899693687317895474713}{2557350540746879037352202339506170083971} a^{18} + \frac{5549664272916195848202213485147210568347184203}{2557350540746879037352202339506170083971} a^{17} - \frac{439057612044272625689817312424517195673725953}{2557350540746879037352202339506170083971} a^{16} + \frac{9532258884867320500446366074256672942139447726}{2557350540746879037352202339506170083971} a^{15} + \frac{6838595141765767871225205163448207890931485947}{2557350540746879037352202339506170083971} a^{14} + \frac{11049078055527513156471054072545035772118026488}{2557350540746879037352202339506170083971} a^{13} + \frac{5169864610779319258001703763544493767886754084}{2557350540746879037352202339506170083971} a^{12} + \frac{9906651128288439607697355119260641827880326985}{2557350540746879037352202339506170083971} a^{11} + \frac{1435007111117370999894090944327216522678356763}{2557350540746879037352202339506170083971} a^{10} + \frac{1064837801357080484067901796899274129826084701}{2557350540746879037352202339506170083971} a^{9} + \frac{180827871600770891586419513200578851954336318}{2557350540746879037352202339506170083971} a^{8} + \frac{102946936977885644014639274292573479232718672}{2557350540746879037352202339506170083971} a^{7} - \frac{16013697047820103216299214416853773958603338}{2557350540746879037352202339506170083971} a^{6} + \frac{8314915609569444218272253481129310364073247}{2557350540746879037352202339506170083971} a^{5} - \frac{651304902274271170277210551783177938355712}{2557350540746879037352202339506170083971} a^{4} + \frac{726144976602140005269575278090251220606831}{2557350540746879037352202339506170083971} a^{3} - \frac{8769308600782264830353714918237355966629}{2557350540746879037352202339506170083971} a^{2} + \frac{1394235332745020163966883441261032634771}{2557350540746879037352202339506170083971} a + \frac{407358091372925813689264430377300248803}{2557350540746879037352202339506170083971} \)  (order $10$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{38\!\cdots\!12}{25\!\cdots\!71}a^{35}-\frac{38\!\cdots\!26}{25\!\cdots\!71}a^{34}+\frac{66\!\cdots\!44}{25\!\cdots\!71}a^{33}-\frac{85\!\cdots\!44}{25\!\cdots\!71}a^{32}+\frac{84\!\cdots\!72}{25\!\cdots\!71}a^{31}-\frac{35\!\cdots\!04}{25\!\cdots\!71}a^{30}+\frac{89\!\cdots\!23}{25\!\cdots\!71}a^{29}-\frac{21\!\cdots\!36}{25\!\cdots\!71}a^{28}+\frac{93\!\cdots\!80}{25\!\cdots\!71}a^{27}-\frac{38\!\cdots\!68}{25\!\cdots\!71}a^{26}+\frac{48\!\cdots\!84}{25\!\cdots\!71}a^{25}-\frac{23\!\cdots\!38}{25\!\cdots\!71}a^{24}+\frac{21\!\cdots\!00}{25\!\cdots\!71}a^{23}-\frac{10\!\cdots\!40}{25\!\cdots\!71}a^{22}+\frac{83\!\cdots\!40}{25\!\cdots\!71}a^{21}-\frac{41\!\cdots\!96}{25\!\cdots\!71}a^{20}+\frac{28\!\cdots\!06}{25\!\cdots\!71}a^{19}-\frac{13\!\cdots\!00}{25\!\cdots\!71}a^{18}+\frac{55\!\cdots\!12}{25\!\cdots\!71}a^{17}-\frac{12\!\cdots\!12}{25\!\cdots\!71}a^{16}+\frac{29\!\cdots\!80}{82\!\cdots\!41}a^{15}+\frac{52\!\cdots\!30}{25\!\cdots\!71}a^{14}+\frac{98\!\cdots\!12}{25\!\cdots\!71}a^{13}+\frac{35\!\cdots\!20}{25\!\cdots\!71}a^{12}+\frac{89\!\cdots\!36}{25\!\cdots\!71}a^{11}+\frac{90\!\cdots\!92}{25\!\cdots\!71}a^{10}+\frac{99\!\cdots\!80}{25\!\cdots\!71}a^{9}+\frac{48\!\cdots\!92}{25\!\cdots\!71}a^{8}+\frac{91\!\cdots\!96}{25\!\cdots\!71}a^{7}-\frac{28\!\cdots\!84}{25\!\cdots\!71}a^{6}+\frac{12\!\cdots\!08}{25\!\cdots\!71}a^{5}-\frac{20\!\cdots\!57}{25\!\cdots\!71}a^{4}+\frac{94\!\cdots\!88}{25\!\cdots\!71}a^{3}-\frac{14\!\cdots\!64}{25\!\cdots\!71}a^{2}+\frac{21\!\cdots\!68}{25\!\cdots\!71}a-\frac{16\!\cdots\!57}{25\!\cdots\!71}$, $\frac{62\!\cdots\!06}{82\!\cdots\!41}a^{35}-\frac{63\!\cdots\!60}{25\!\cdots\!71}a^{34}+\frac{36\!\cdots\!20}{25\!\cdots\!71}a^{33}-\frac{11\!\cdots\!32}{25\!\cdots\!71}a^{32}+\frac{50\!\cdots\!00}{25\!\cdots\!71}a^{31}-\frac{11\!\cdots\!37}{25\!\cdots\!71}a^{30}+\frac{47\!\cdots\!40}{25\!\cdots\!71}a^{29}-\frac{11\!\cdots\!20}{25\!\cdots\!71}a^{28}+\frac{47\!\cdots\!24}{25\!\cdots\!71}a^{27}-\frac{12\!\cdots\!76}{25\!\cdots\!71}a^{26}+\frac{27\!\cdots\!18}{25\!\cdots\!71}a^{25}-\frac{65\!\cdots\!24}{25\!\cdots\!71}a^{24}+\frac{12\!\cdots\!52}{25\!\cdots\!71}a^{23}-\frac{28\!\cdots\!56}{25\!\cdots\!71}a^{22}+\frac{51\!\cdots\!28}{25\!\cdots\!71}a^{21}-\frac{11\!\cdots\!62}{25\!\cdots\!71}a^{20}+\frac{17\!\cdots\!16}{25\!\cdots\!71}a^{19}-\frac{37\!\cdots\!68}{25\!\cdots\!71}a^{18}+\frac{39\!\cdots\!80}{25\!\cdots\!71}a^{17}-\frac{63\!\cdots\!20}{25\!\cdots\!71}a^{16}+\frac{52\!\cdots\!02}{25\!\cdots\!71}a^{15}-\frac{72\!\cdots\!96}{25\!\cdots\!71}a^{14}-\frac{20\!\cdots\!12}{25\!\cdots\!71}a^{13}-\frac{89\!\cdots\!88}{25\!\cdots\!71}a^{12}+\frac{89\!\cdots\!32}{25\!\cdots\!71}a^{11}-\frac{95\!\cdots\!84}{25\!\cdots\!71}a^{10}-\frac{41\!\cdots\!08}{25\!\cdots\!71}a^{9}-\frac{95\!\cdots\!52}{25\!\cdots\!71}a^{8}+\frac{30\!\cdots\!92}{25\!\cdots\!71}a^{7}-\frac{12\!\cdots\!68}{25\!\cdots\!71}a^{6}+\frac{25\!\cdots\!39}{25\!\cdots\!71}a^{5}-\frac{98\!\cdots\!12}{25\!\cdots\!71}a^{4}+\frac{14\!\cdots\!52}{25\!\cdots\!71}a^{3}-\frac{22\!\cdots\!04}{25\!\cdots\!71}a^{2}+\frac{28\!\cdots\!56}{25\!\cdots\!71}a-\frac{38\!\cdots\!12}{25\!\cdots\!71}$, $\frac{67\!\cdots\!49}{10\!\cdots\!53}a^{35}-\frac{13\!\cdots\!94}{10\!\cdots\!53}a^{34}+\frac{12\!\cdots\!15}{10\!\cdots\!53}a^{33}-\frac{26\!\cdots\!34}{10\!\cdots\!53}a^{32}+\frac{15\!\cdots\!12}{10\!\cdots\!53}a^{31}-\frac{20\!\cdots\!07}{10\!\cdots\!53}a^{30}+\frac{15\!\cdots\!26}{10\!\cdots\!53}a^{29}-\frac{19\!\cdots\!81}{10\!\cdots\!53}a^{28}+\frac{16\!\cdots\!11}{10\!\cdots\!53}a^{27}-\frac{22\!\cdots\!00}{10\!\cdots\!53}a^{26}+\frac{88\!\cdots\!60}{10\!\cdots\!53}a^{25}-\frac{12\!\cdots\!88}{10\!\cdots\!53}a^{24}+\frac{39\!\cdots\!59}{10\!\cdots\!53}a^{23}-\frac{54\!\cdots\!55}{10\!\cdots\!53}a^{22}+\frac{15\!\cdots\!45}{10\!\cdots\!53}a^{21}-\frac{21\!\cdots\!82}{10\!\cdots\!53}a^{20}+\frac{54\!\cdots\!93}{10\!\cdots\!53}a^{19}-\frac{71\!\cdots\!59}{10\!\cdots\!53}a^{18}+\frac{11\!\cdots\!54}{10\!\cdots\!53}a^{17}-\frac{11\!\cdots\!31}{10\!\cdots\!53}a^{16}+\frac{16\!\cdots\!88}{10\!\cdots\!53}a^{15}-\frac{67\!\cdots\!66}{10\!\cdots\!53}a^{14}+\frac{56\!\cdots\!81}{10\!\cdots\!53}a^{13}-\frac{12\!\cdots\!03}{10\!\cdots\!53}a^{12}+\frac{69\!\cdots\!72}{10\!\cdots\!53}a^{11}-\frac{16\!\cdots\!46}{10\!\cdots\!53}a^{10}-\frac{63\!\cdots\!90}{10\!\cdots\!53}a^{9}-\frac{16\!\cdots\!17}{10\!\cdots\!53}a^{8}-\frac{12\!\cdots\!11}{10\!\cdots\!53}a^{7}-\frac{22\!\cdots\!04}{10\!\cdots\!53}a^{6}+\frac{47\!\cdots\!67}{10\!\cdots\!53}a^{5}-\frac{17\!\cdots\!00}{10\!\cdots\!53}a^{4}+\frac{27\!\cdots\!49}{10\!\cdots\!53}a^{3}-\frac{13\!\cdots\!45}{10\!\cdots\!53}a^{2}+\frac{52\!\cdots\!21}{10\!\cdots\!53}a-\frac{70\!\cdots\!11}{10\!\cdots\!53}$, $\frac{64\!\cdots\!23}{10\!\cdots\!53}a^{35}-\frac{12\!\cdots\!51}{10\!\cdots\!53}a^{34}+\frac{11\!\cdots\!00}{10\!\cdots\!53}a^{33}-\frac{25\!\cdots\!85}{10\!\cdots\!53}a^{32}+\frac{15\!\cdots\!09}{10\!\cdots\!53}a^{31}-\frac{19\!\cdots\!24}{10\!\cdots\!53}a^{30}+\frac{15\!\cdots\!03}{10\!\cdots\!53}a^{29}-\frac{18\!\cdots\!21}{10\!\cdots\!53}a^{28}+\frac{15\!\cdots\!13}{10\!\cdots\!53}a^{27}-\frac{21\!\cdots\!81}{10\!\cdots\!53}a^{26}+\frac{84\!\cdots\!13}{10\!\cdots\!53}a^{25}-\frac{11\!\cdots\!80}{10\!\cdots\!53}a^{24}+\frac{38\!\cdots\!20}{10\!\cdots\!53}a^{23}-\frac{52\!\cdots\!38}{10\!\cdots\!53}a^{22}+\frac{15\!\cdots\!89}{10\!\cdots\!53}a^{21}-\frac{20\!\cdots\!76}{10\!\cdots\!53}a^{20}+\frac{52\!\cdots\!06}{10\!\cdots\!53}a^{19}-\frac{68\!\cdots\!33}{10\!\cdots\!53}a^{18}+\frac{10\!\cdots\!55}{10\!\cdots\!53}a^{17}-\frac{10\!\cdots\!01}{10\!\cdots\!53}a^{16}+\frac{16\!\cdots\!53}{10\!\cdots\!53}a^{15}-\frac{64\!\cdots\!34}{10\!\cdots\!53}a^{14}+\frac{54\!\cdots\!00}{10\!\cdots\!53}a^{13}-\frac{11\!\cdots\!21}{10\!\cdots\!53}a^{12}+\frac{67\!\cdots\!22}{10\!\cdots\!53}a^{11}-\frac{15\!\cdots\!90}{10\!\cdots\!53}a^{10}-\frac{60\!\cdots\!32}{10\!\cdots\!53}a^{9}-\frac{16\!\cdots\!96}{10\!\cdots\!53}a^{8}-\frac{24\!\cdots\!02}{10\!\cdots\!53}a^{7}-\frac{21\!\cdots\!76}{10\!\cdots\!53}a^{6}+\frac{45\!\cdots\!82}{10\!\cdots\!53}a^{5}-\frac{17\!\cdots\!51}{10\!\cdots\!53}a^{4}+\frac{26\!\cdots\!27}{10\!\cdots\!53}a^{3}-\frac{72\!\cdots\!89}{10\!\cdots\!53}a^{2}+\frac{50\!\cdots\!77}{10\!\cdots\!53}a-\frac{67\!\cdots\!72}{10\!\cdots\!53}$, $\frac{18\!\cdots\!40}{10\!\cdots\!53}a^{35}-\frac{36\!\cdots\!28}{10\!\cdots\!53}a^{34}+\frac{32\!\cdots\!20}{10\!\cdots\!53}a^{33}-\frac{70\!\cdots\!46}{10\!\cdots\!53}a^{32}+\frac{42\!\cdots\!80}{10\!\cdots\!53}a^{31}-\frac{55\!\cdots\!80}{10\!\cdots\!53}a^{30}+\frac{42\!\cdots\!36}{10\!\cdots\!53}a^{29}-\frac{51\!\cdots\!44}{10\!\cdots\!53}a^{28}+\frac{43\!\cdots\!08}{10\!\cdots\!53}a^{27}-\frac{60\!\cdots\!56}{10\!\cdots\!53}a^{26}+\frac{23\!\cdots\!68}{10\!\cdots\!53}a^{25}-\frac{32\!\cdots\!84}{10\!\cdots\!53}a^{24}+\frac{10\!\cdots\!92}{10\!\cdots\!53}a^{23}-\frac{14\!\cdots\!24}{10\!\cdots\!53}a^{22}+\frac{42\!\cdots\!24}{10\!\cdots\!53}a^{21}-\frac{57\!\cdots\!32}{10\!\cdots\!53}a^{20}+\frac{14\!\cdots\!00}{10\!\cdots\!53}a^{19}-\frac{19\!\cdots\!80}{10\!\cdots\!53}a^{18}+\frac{29\!\cdots\!28}{10\!\cdots\!53}a^{17}-\frac{30\!\cdots\!24}{10\!\cdots\!53}a^{16}+\frac{44\!\cdots\!32}{10\!\cdots\!53}a^{15}-\frac{18\!\cdots\!12}{10\!\cdots\!53}a^{14}+\frac{15\!\cdots\!48}{10\!\cdots\!53}a^{13}-\frac{32\!\cdots\!84}{10\!\cdots\!53}a^{12}+\frac{18\!\cdots\!48}{10\!\cdots\!53}a^{11}-\frac{43\!\cdots\!08}{10\!\cdots\!53}a^{10}-\frac{16\!\cdots\!52}{10\!\cdots\!53}a^{9}-\frac{44\!\cdots\!32}{10\!\cdots\!53}a^{8}-\frac{58\!\cdots\!56}{10\!\cdots\!53}a^{7}-\frac{58\!\cdots\!08}{10\!\cdots\!53}a^{6}+\frac{12\!\cdots\!68}{10\!\cdots\!53}a^{5}-\frac{47\!\cdots\!76}{10\!\cdots\!53}a^{4}+\frac{72\!\cdots\!44}{10\!\cdots\!53}a^{3}-\frac{27\!\cdots\!51}{10\!\cdots\!53}a^{2}+\frac{13\!\cdots\!20}{10\!\cdots\!53}a-\frac{18\!\cdots\!60}{10\!\cdots\!53}$, $\frac{20\!\cdots\!76}{10\!\cdots\!53}a^{35}-\frac{18\!\cdots\!17}{10\!\cdots\!53}a^{34}+\frac{33\!\cdots\!01}{10\!\cdots\!53}a^{33}-\frac{40\!\cdots\!52}{10\!\cdots\!53}a^{32}+\frac{43\!\cdots\!16}{10\!\cdots\!53}a^{31}-\frac{13\!\cdots\!35}{10\!\cdots\!53}a^{30}+\frac{45\!\cdots\!28}{10\!\cdots\!53}a^{29}-\frac{64\!\cdots\!33}{10\!\cdots\!53}a^{28}+\frac{47\!\cdots\!63}{10\!\cdots\!53}a^{27}-\frac{15\!\cdots\!54}{10\!\cdots\!53}a^{26}+\frac{24\!\cdots\!11}{10\!\cdots\!53}a^{25}-\frac{95\!\cdots\!71}{10\!\cdots\!53}a^{24}+\frac{10\!\cdots\!48}{10\!\cdots\!53}a^{23}-\frac{44\!\cdots\!24}{10\!\cdots\!53}a^{22}+\frac{41\!\cdots\!06}{10\!\cdots\!53}a^{21}-\frac{16\!\cdots\!31}{10\!\cdots\!53}a^{20}+\frac{14\!\cdots\!64}{10\!\cdots\!53}a^{19}-\frac{53\!\cdots\!50}{10\!\cdots\!53}a^{18}+\frac{26\!\cdots\!11}{10\!\cdots\!53}a^{17}-\frac{30\!\cdots\!29}{10\!\cdots\!53}a^{16}+\frac{44\!\cdots\!43}{10\!\cdots\!53}a^{15}+\frac{31\!\cdots\!25}{10\!\cdots\!53}a^{14}+\frac{48\!\cdots\!30}{10\!\cdots\!53}a^{13}+\frac{19\!\cdots\!44}{10\!\cdots\!53}a^{12}+\frac{43\!\cdots\!20}{10\!\cdots\!53}a^{11}+\frac{24\!\cdots\!54}{10\!\cdots\!53}a^{10}+\frac{54\!\cdots\!34}{10\!\cdots\!53}a^{9}+\frac{68\!\cdots\!12}{10\!\cdots\!53}a^{8}-\frac{75\!\cdots\!56}{10\!\cdots\!53}a^{7}-\frac{24\!\cdots\!09}{10\!\cdots\!53}a^{6}-\frac{80\!\cdots\!48}{10\!\cdots\!53}a^{5}+\frac{14\!\cdots\!66}{10\!\cdots\!53}a^{4}-\frac{22\!\cdots\!99}{10\!\cdots\!53}a^{3}+\frac{36\!\cdots\!87}{10\!\cdots\!53}a^{2}+\frac{62\!\cdots\!41}{10\!\cdots\!53}a+\frac{28\!\cdots\!99}{35\!\cdots\!63}$, $\frac{25\!\cdots\!52}{10\!\cdots\!53}a^{35}-\frac{25\!\cdots\!06}{10\!\cdots\!53}a^{34}+\frac{43\!\cdots\!54}{10\!\cdots\!53}a^{33}-\frac{56\!\cdots\!84}{10\!\cdots\!53}a^{32}+\frac{12\!\cdots\!26}{25\!\cdots\!71}a^{31}-\frac{24\!\cdots\!34}{10\!\cdots\!53}a^{30}+\frac{58\!\cdots\!55}{10\!\cdots\!53}a^{29}-\frac{14\!\cdots\!76}{10\!\cdots\!53}a^{28}+\frac{60\!\cdots\!40}{10\!\cdots\!53}a^{27}-\frac{25\!\cdots\!20}{10\!\cdots\!53}a^{26}+\frac{31\!\cdots\!72}{10\!\cdots\!53}a^{25}-\frac{15\!\cdots\!14}{10\!\cdots\!53}a^{24}+\frac{13\!\cdots\!92}{10\!\cdots\!53}a^{23}-\frac{71\!\cdots\!06}{10\!\cdots\!53}a^{22}+\frac{54\!\cdots\!88}{10\!\cdots\!53}a^{21}-\frac{27\!\cdots\!90}{10\!\cdots\!53}a^{20}+\frac{18\!\cdots\!49}{10\!\cdots\!53}a^{19}-\frac{90\!\cdots\!28}{10\!\cdots\!53}a^{18}+\frac{36\!\cdots\!46}{10\!\cdots\!53}a^{17}-\frac{84\!\cdots\!92}{10\!\cdots\!53}a^{16}+\frac{19\!\cdots\!90}{35\!\cdots\!63}a^{15}+\frac{32\!\cdots\!29}{10\!\cdots\!53}a^{14}+\frac{64\!\cdots\!70}{10\!\cdots\!53}a^{13}+\frac{23\!\cdots\!16}{10\!\cdots\!53}a^{12}+\frac{59\!\cdots\!10}{10\!\cdots\!53}a^{11}+\frac{57\!\cdots\!76}{10\!\cdots\!53}a^{10}+\frac{80\!\cdots\!04}{10\!\cdots\!53}a^{9}+\frac{32\!\cdots\!46}{10\!\cdots\!53}a^{8}+\frac{61\!\cdots\!82}{10\!\cdots\!53}a^{7}-\frac{18\!\cdots\!50}{10\!\cdots\!53}a^{6}+\frac{80\!\cdots\!12}{10\!\cdots\!53}a^{5}-\frac{51\!\cdots\!36}{25\!\cdots\!71}a^{4}+\frac{62\!\cdots\!44}{10\!\cdots\!53}a^{3}-\frac{95\!\cdots\!10}{10\!\cdots\!53}a^{2}+\frac{14\!\cdots\!10}{10\!\cdots\!53}a-\frac{18\!\cdots\!86}{10\!\cdots\!53}$, $\frac{15\!\cdots\!43}{10\!\cdots\!53}a^{35}-\frac{30\!\cdots\!93}{10\!\cdots\!53}a^{34}+\frac{27\!\cdots\!30}{10\!\cdots\!53}a^{33}-\frac{58\!\cdots\!19}{10\!\cdots\!53}a^{32}+\frac{35\!\cdots\!59}{10\!\cdots\!53}a^{31}-\frac{46\!\cdots\!74}{10\!\cdots\!53}a^{30}+\frac{35\!\cdots\!77}{10\!\cdots\!53}a^{29}-\frac{43\!\cdots\!97}{10\!\cdots\!53}a^{28}+\frac{36\!\cdots\!51}{10\!\cdots\!53}a^{27}-\frac{51\!\cdots\!95}{10\!\cdots\!53}a^{26}+\frac{19\!\cdots\!55}{10\!\cdots\!53}a^{25}-\frac{27\!\cdots\!96}{10\!\cdots\!53}a^{24}+\frac{88\!\cdots\!78}{10\!\cdots\!53}a^{23}-\frac{12\!\cdots\!29}{10\!\cdots\!53}a^{22}+\frac{35\!\cdots\!45}{10\!\cdots\!53}a^{21}-\frac{48\!\cdots\!64}{10\!\cdots\!53}a^{20}+\frac{12\!\cdots\!76}{10\!\cdots\!53}a^{19}-\frac{16\!\cdots\!13}{10\!\cdots\!53}a^{18}+\frac{25\!\cdots\!78}{10\!\cdots\!53}a^{17}-\frac{25\!\cdots\!97}{10\!\cdots\!53}a^{16}+\frac{37\!\cdots\!31}{10\!\cdots\!53}a^{15}-\frac{15\!\cdots\!02}{10\!\cdots\!53}a^{14}+\frac{12\!\cdots\!02}{10\!\cdots\!53}a^{13}-\frac{27\!\cdots\!03}{10\!\cdots\!53}a^{12}+\frac{15\!\cdots\!14}{10\!\cdots\!53}a^{11}-\frac{36\!\cdots\!82}{10\!\cdots\!53}a^{10}-\frac{14\!\cdots\!20}{10\!\cdots\!53}a^{9}-\frac{37\!\cdots\!34}{10\!\cdots\!53}a^{8}-\frac{42\!\cdots\!87}{10\!\cdots\!53}a^{7}-\frac{49\!\cdots\!88}{10\!\cdots\!53}a^{6}+\frac{10\!\cdots\!04}{10\!\cdots\!53}a^{5}-\frac{40\!\cdots\!45}{10\!\cdots\!53}a^{4}+\frac{60\!\cdots\!23}{10\!\cdots\!53}a^{3}-\frac{27\!\cdots\!09}{10\!\cdots\!53}a^{2}+\frac{11\!\cdots\!97}{10\!\cdots\!53}a-\frac{15\!\cdots\!02}{10\!\cdots\!53}$, $\frac{32\!\cdots\!30}{35\!\cdots\!63}a^{35}-\frac{29\!\cdots\!85}{35\!\cdots\!63}a^{34}+\frac{54\!\cdots\!35}{35\!\cdots\!63}a^{33}-\frac{65\!\cdots\!10}{35\!\cdots\!63}a^{32}+\frac{68\!\cdots\!85}{35\!\cdots\!63}a^{31}-\frac{22\!\cdots\!75}{35\!\cdots\!63}a^{30}+\frac{73\!\cdots\!40}{35\!\cdots\!63}a^{29}-\frac{10\!\cdots\!25}{35\!\cdots\!63}a^{28}+\frac{76\!\cdots\!55}{35\!\cdots\!63}a^{27}-\frac{24\!\cdots\!02}{35\!\cdots\!63}a^{26}+\frac{39\!\cdots\!15}{35\!\cdots\!63}a^{25}-\frac{15\!\cdots\!85}{35\!\cdots\!63}a^{24}+\frac{17\!\cdots\!80}{35\!\cdots\!63}a^{23}-\frac{70\!\cdots\!90}{35\!\cdots\!63}a^{22}+\frac{67\!\cdots\!90}{35\!\cdots\!63}a^{21}-\frac{27\!\cdots\!95}{35\!\cdots\!63}a^{20}+\frac{22\!\cdots\!90}{35\!\cdots\!63}a^{19}-\frac{86\!\cdots\!50}{35\!\cdots\!63}a^{18}+\frac{42\!\cdots\!05}{35\!\cdots\!63}a^{17}-\frac{49\!\cdots\!65}{35\!\cdots\!63}a^{16}+\frac{71\!\cdots\!05}{35\!\cdots\!63}a^{15}+\frac{50\!\cdots\!05}{35\!\cdots\!63}a^{14}+\frac{78\!\cdots\!20}{35\!\cdots\!63}a^{13}+\frac{31\!\cdots\!40}{35\!\cdots\!63}a^{12}+\frac{68\!\cdots\!55}{35\!\cdots\!63}a^{11}+\frac{39\!\cdots\!40}{35\!\cdots\!63}a^{10}+\frac{87\!\cdots\!00}{35\!\cdots\!63}a^{9}+\frac{10\!\cdots\!30}{35\!\cdots\!63}a^{8}-\frac{12\!\cdots\!60}{35\!\cdots\!63}a^{7}-\frac{34\!\cdots\!13}{35\!\cdots\!63}a^{6}-\frac{12\!\cdots\!60}{35\!\cdots\!63}a^{5}+\frac{23\!\cdots\!00}{35\!\cdots\!63}a^{4}-\frac{35\!\cdots\!85}{35\!\cdots\!63}a^{3}+\frac{58\!\cdots\!45}{35\!\cdots\!63}a^{2}-\frac{13\!\cdots\!37}{35\!\cdots\!63}a+\frac{14\!\cdots\!45}{35\!\cdots\!63}$, $\frac{49\!\cdots\!05}{10\!\cdots\!53}a^{35}-\frac{42\!\cdots\!59}{10\!\cdots\!53}a^{34}+\frac{83\!\cdots\!52}{10\!\cdots\!53}a^{33}-\frac{97\!\cdots\!67}{10\!\cdots\!53}a^{32}+\frac{10\!\cdots\!28}{10\!\cdots\!53}a^{31}-\frac{30\!\cdots\!64}{10\!\cdots\!53}a^{30}+\frac{11\!\cdots\!50}{10\!\cdots\!53}a^{29}-\frac{10\!\cdots\!28}{10\!\cdots\!53}a^{28}+\frac{11\!\cdots\!23}{10\!\cdots\!53}a^{27}-\frac{31\!\cdots\!83}{10\!\cdots\!53}a^{26}+\frac{61\!\cdots\!49}{10\!\cdots\!53}a^{25}-\frac{20\!\cdots\!68}{10\!\cdots\!53}a^{24}+\frac{26\!\cdots\!17}{10\!\cdots\!53}a^{23}-\frac{97\!\cdots\!63}{10\!\cdots\!53}a^{22}+\frac{10\!\cdots\!88}{10\!\cdots\!53}a^{21}-\frac{37\!\cdots\!49}{10\!\cdots\!53}a^{20}+\frac{35\!\cdots\!69}{10\!\cdots\!53}a^{19}-\frac{11\!\cdots\!03}{10\!\cdots\!53}a^{18}+\frac{67\!\cdots\!66}{10\!\cdots\!53}a^{17}-\frac{53\!\cdots\!76}{10\!\cdots\!53}a^{16}+\frac{11\!\cdots\!60}{10\!\cdots\!53}a^{15}+\frac{83\!\cdots\!61}{10\!\cdots\!53}a^{14}+\frac{13\!\cdots\!44}{10\!\cdots\!53}a^{13}+\frac{14\!\cdots\!50}{25\!\cdots\!71}a^{12}+\frac{12\!\cdots\!35}{10\!\cdots\!53}a^{11}+\frac{18\!\cdots\!59}{10\!\cdots\!53}a^{10}+\frac{13\!\cdots\!41}{10\!\cdots\!53}a^{9}+\frac{28\!\cdots\!94}{10\!\cdots\!53}a^{8}+\frac{13\!\cdots\!88}{10\!\cdots\!53}a^{7}-\frac{18\!\cdots\!54}{10\!\cdots\!53}a^{6}+\frac{10\!\cdots\!79}{10\!\cdots\!53}a^{5}-\frac{86\!\cdots\!27}{10\!\cdots\!53}a^{4}+\frac{67\!\cdots\!80}{10\!\cdots\!53}a^{3}-\frac{11\!\cdots\!52}{10\!\cdots\!53}a^{2}+\frac{99\!\cdots\!21}{10\!\cdots\!53}a-\frac{75\!\cdots\!96}{10\!\cdots\!53}$, $\frac{62\!\cdots\!82}{10\!\cdots\!53}a^{35}-\frac{16\!\cdots\!13}{10\!\cdots\!53}a^{34}+\frac{11\!\cdots\!83}{10\!\cdots\!53}a^{33}-\frac{31\!\cdots\!37}{10\!\cdots\!53}a^{32}+\frac{15\!\cdots\!17}{10\!\cdots\!53}a^{31}-\frac{27\!\cdots\!00}{10\!\cdots\!53}a^{30}+\frac{15\!\cdots\!47}{10\!\cdots\!53}a^{29}-\frac{27\!\cdots\!45}{10\!\cdots\!53}a^{28}+\frac{15\!\cdots\!41}{10\!\cdots\!53}a^{27}-\frac{30\!\cdots\!04}{10\!\cdots\!53}a^{26}+\frac{85\!\cdots\!26}{10\!\cdots\!53}a^{25}-\frac{16\!\cdots\!05}{10\!\cdots\!53}a^{24}+\frac{39\!\cdots\!20}{10\!\cdots\!53}a^{23}-\frac{74\!\cdots\!55}{10\!\cdots\!53}a^{22}+\frac{15\!\cdots\!94}{10\!\cdots\!53}a^{21}-\frac{29\!\cdots\!37}{10\!\cdots\!53}a^{20}+\frac{55\!\cdots\!75}{10\!\cdots\!53}a^{19}-\frac{98\!\cdots\!59}{10\!\cdots\!53}a^{18}+\frac{11\!\cdots\!29}{10\!\cdots\!53}a^{17}-\frac{17\!\cdots\!52}{10\!\cdots\!53}a^{16}+\frac{17\!\cdots\!73}{10\!\cdots\!53}a^{15}-\frac{17\!\cdots\!54}{10\!\cdots\!53}a^{14}+\frac{89\!\cdots\!25}{10\!\cdots\!53}a^{13}-\frac{24\!\cdots\!09}{10\!\cdots\!53}a^{12}+\frac{47\!\cdots\!33}{10\!\cdots\!53}a^{11}-\frac{28\!\cdots\!20}{10\!\cdots\!53}a^{10}-\frac{25\!\cdots\!09}{10\!\cdots\!53}a^{9}-\frac{60\!\cdots\!87}{10\!\cdots\!53}a^{8}-\frac{36\!\cdots\!45}{35\!\cdots\!63}a^{7}-\frac{66\!\cdots\!74}{10\!\cdots\!53}a^{6}-\frac{20\!\cdots\!10}{10\!\cdots\!53}a^{5}-\frac{64\!\cdots\!76}{10\!\cdots\!53}a^{4}+\frac{98\!\cdots\!58}{10\!\cdots\!53}a^{3}-\frac{19\!\cdots\!91}{10\!\cdots\!53}a^{2}+\frac{67\!\cdots\!40}{10\!\cdots\!53}a-\frac{50\!\cdots\!19}{10\!\cdots\!53}$, $\frac{32\!\cdots\!73}{10\!\cdots\!53}a^{35}-\frac{28\!\cdots\!39}{10\!\cdots\!53}a^{34}+\frac{54\!\cdots\!89}{10\!\cdots\!53}a^{33}-\frac{64\!\cdots\!27}{10\!\cdots\!53}a^{32}+\frac{69\!\cdots\!01}{10\!\cdots\!53}a^{31}-\frac{20\!\cdots\!36}{10\!\cdots\!53}a^{30}+\frac{74\!\cdots\!16}{10\!\cdots\!53}a^{29}-\frac{83\!\cdots\!72}{10\!\cdots\!53}a^{28}+\frac{77\!\cdots\!22}{10\!\cdots\!53}a^{27}-\frac{22\!\cdots\!29}{10\!\cdots\!53}a^{26}+\frac{39\!\cdots\!77}{10\!\cdots\!53}a^{25}-\frac{14\!\cdots\!18}{10\!\cdots\!53}a^{24}+\frac{17\!\cdots\!99}{10\!\cdots\!53}a^{23}-\frac{66\!\cdots\!40}{10\!\cdots\!53}a^{22}+\frac{67\!\cdots\!69}{10\!\cdots\!53}a^{21}-\frac{25\!\cdots\!26}{10\!\cdots\!53}a^{20}+\frac{22\!\cdots\!40}{10\!\cdots\!53}a^{19}-\frac{81\!\cdots\!17}{10\!\cdots\!53}a^{18}+\frac{42\!\cdots\!07}{10\!\cdots\!53}a^{17}-\frac{38\!\cdots\!55}{10\!\cdots\!53}a^{16}+\frac{72\!\cdots\!61}{10\!\cdots\!53}a^{15}+\frac{53\!\cdots\!55}{10\!\cdots\!53}a^{14}+\frac{80\!\cdots\!50}{10\!\cdots\!53}a^{13}+\frac{34\!\cdots\!72}{10\!\cdots\!53}a^{12}+\frac{70\!\cdots\!01}{10\!\cdots\!53}a^{11}+\frac{54\!\cdots\!38}{10\!\cdots\!53}a^{10}+\frac{68\!\cdots\!97}{10\!\cdots\!53}a^{9}-\frac{38\!\cdots\!22}{10\!\cdots\!53}a^{8}-\frac{17\!\cdots\!66}{10\!\cdots\!53}a^{7}-\frac{41\!\cdots\!25}{10\!\cdots\!53}a^{6}-\frac{25\!\cdots\!27}{10\!\cdots\!53}a^{5}-\frac{29\!\cdots\!47}{10\!\cdots\!53}a^{4}+\frac{45\!\cdots\!49}{10\!\cdots\!53}a^{3}+\frac{40\!\cdots\!17}{10\!\cdots\!53}a^{2}-\frac{20\!\cdots\!79}{10\!\cdots\!53}a+\frac{27\!\cdots\!39}{35\!\cdots\!63}$, $\frac{28\!\cdots\!83}{10\!\cdots\!53}a^{35}-\frac{30\!\cdots\!82}{10\!\cdots\!53}a^{34}+\frac{49\!\cdots\!62}{10\!\cdots\!53}a^{33}-\frac{66\!\cdots\!78}{10\!\cdots\!53}a^{32}+\frac{63\!\cdots\!83}{10\!\cdots\!53}a^{31}-\frac{30\!\cdots\!25}{10\!\cdots\!53}a^{30}+\frac{66\!\cdots\!83}{10\!\cdots\!53}a^{29}-\frac{19\!\cdots\!08}{10\!\cdots\!53}a^{28}+\frac{69\!\cdots\!38}{10\!\cdots\!53}a^{27}-\frac{32\!\cdots\!63}{10\!\cdots\!53}a^{26}+\frac{36\!\cdots\!83}{10\!\cdots\!53}a^{25}-\frac{19\!\cdots\!44}{10\!\cdots\!53}a^{24}+\frac{15\!\cdots\!06}{10\!\cdots\!53}a^{23}-\frac{88\!\cdots\!48}{10\!\cdots\!53}a^{22}+\frac{62\!\cdots\!58}{10\!\cdots\!53}a^{21}-\frac{34\!\cdots\!37}{10\!\cdots\!53}a^{20}+\frac{21\!\cdots\!56}{10\!\cdots\!53}a^{19}-\frac{11\!\cdots\!08}{10\!\cdots\!53}a^{18}+\frac{40\!\cdots\!28}{10\!\cdots\!53}a^{17}-\frac{11\!\cdots\!70}{10\!\cdots\!53}a^{16}+\frac{68\!\cdots\!76}{10\!\cdots\!53}a^{15}+\frac{11\!\cdots\!36}{35\!\cdots\!63}a^{14}+\frac{68\!\cdots\!18}{10\!\cdots\!53}a^{13}+\frac{21\!\cdots\!84}{10\!\cdots\!53}a^{12}+\frac{20\!\cdots\!99}{35\!\cdots\!63}a^{11}-\frac{38\!\cdots\!13}{10\!\cdots\!53}a^{10}+\frac{58\!\cdots\!84}{10\!\cdots\!53}a^{9}+\frac{24\!\cdots\!40}{10\!\cdots\!53}a^{8}+\frac{53\!\cdots\!20}{10\!\cdots\!53}a^{7}-\frac{24\!\cdots\!40}{10\!\cdots\!53}a^{6}+\frac{10\!\cdots\!95}{10\!\cdots\!53}a^{5}-\frac{15\!\cdots\!52}{10\!\cdots\!53}a^{4}+\frac{54\!\cdots\!60}{10\!\cdots\!53}a^{3}-\frac{81\!\cdots\!82}{10\!\cdots\!53}a^{2}+\frac{43\!\cdots\!28}{10\!\cdots\!53}a+\frac{10\!\cdots\!25}{10\!\cdots\!53}$, $\frac{70\!\cdots\!29}{10\!\cdots\!53}a^{35}-\frac{72\!\cdots\!90}{10\!\cdots\!53}a^{34}+\frac{11\!\cdots\!37}{10\!\cdots\!53}a^{33}-\frac{15\!\cdots\!20}{10\!\cdots\!53}a^{32}+\frac{35\!\cdots\!40}{25\!\cdots\!71}a^{31}-\frac{69\!\cdots\!11}{10\!\cdots\!53}a^{30}+\frac{16\!\cdots\!40}{10\!\cdots\!53}a^{29}-\frac{43\!\cdots\!33}{10\!\cdots\!53}a^{28}+\frac{16\!\cdots\!15}{10\!\cdots\!53}a^{27}-\frac{74\!\cdots\!65}{10\!\cdots\!53}a^{26}+\frac{87\!\cdots\!06}{10\!\cdots\!53}a^{25}-\frac{44\!\cdots\!75}{10\!\cdots\!53}a^{24}+\frac{38\!\cdots\!45}{10\!\cdots\!53}a^{23}-\frac{20\!\cdots\!10}{10\!\cdots\!53}a^{22}+\frac{48\!\cdots\!43}{35\!\cdots\!63}a^{21}-\frac{79\!\cdots\!01}{10\!\cdots\!53}a^{20}+\frac{51\!\cdots\!92}{10\!\cdots\!53}a^{19}-\frac{25\!\cdots\!81}{10\!\cdots\!53}a^{18}+\frac{98\!\cdots\!03}{10\!\cdots\!53}a^{17}-\frac{24\!\cdots\!92}{10\!\cdots\!53}a^{16}+\frac{16\!\cdots\!83}{10\!\cdots\!53}a^{15}+\frac{88\!\cdots\!50}{10\!\cdots\!53}a^{14}+\frac{17\!\cdots\!28}{10\!\cdots\!53}a^{13}+\frac{56\!\cdots\!11}{10\!\cdots\!53}a^{12}+\frac{15\!\cdots\!12}{10\!\cdots\!53}a^{11}-\frac{47\!\cdots\!77}{10\!\cdots\!53}a^{10}+\frac{14\!\cdots\!78}{10\!\cdots\!53}a^{9}+\frac{63\!\cdots\!37}{10\!\cdots\!53}a^{8}+\frac{12\!\cdots\!56}{10\!\cdots\!53}a^{7}-\frac{53\!\cdots\!33}{10\!\cdots\!53}a^{6}+\frac{21\!\cdots\!38}{10\!\cdots\!53}a^{5}-\frac{33\!\cdots\!24}{10\!\cdots\!53}a^{4}+\frac{13\!\cdots\!63}{10\!\cdots\!53}a^{3}-\frac{19\!\cdots\!56}{10\!\cdots\!53}a^{2}+\frac{91\!\cdots\!02}{10\!\cdots\!53}a+\frac{22\!\cdots\!15}{10\!\cdots\!53}$, $\frac{37\!\cdots\!93}{10\!\cdots\!53}a^{35}-\frac{24\!\cdots\!08}{10\!\cdots\!53}a^{34}+\frac{63\!\cdots\!65}{10\!\cdots\!53}a^{33}-\frac{60\!\cdots\!01}{10\!\cdots\!53}a^{32}+\frac{79\!\cdots\!13}{10\!\cdots\!53}a^{31}-\frac{61\!\cdots\!97}{10\!\cdots\!53}a^{30}+\frac{86\!\cdots\!05}{10\!\cdots\!53}a^{29}+\frac{99\!\cdots\!83}{10\!\cdots\!53}a^{28}+\frac{90\!\cdots\!26}{10\!\cdots\!53}a^{27}-\frac{49\!\cdots\!42}{10\!\cdots\!53}a^{26}+\frac{10\!\cdots\!66}{25\!\cdots\!71}a^{25}-\frac{60\!\cdots\!60}{10\!\cdots\!53}a^{24}+\frac{20\!\cdots\!91}{10\!\cdots\!53}a^{23}-\frac{32\!\cdots\!88}{10\!\cdots\!53}a^{22}+\frac{78\!\cdots\!07}{10\!\cdots\!53}a^{21}-\frac{12\!\cdots\!16}{10\!\cdots\!53}a^{20}+\frac{26\!\cdots\!67}{10\!\cdots\!53}a^{19}-\frac{34\!\cdots\!75}{10\!\cdots\!53}a^{18}+\frac{50\!\cdots\!86}{10\!\cdots\!53}a^{17}+\frac{65\!\cdots\!88}{10\!\cdots\!53}a^{16}+\frac{89\!\cdots\!26}{10\!\cdots\!53}a^{15}+\frac{82\!\cdots\!14}{10\!\cdots\!53}a^{14}+\frac{11\!\cdots\!19}{10\!\cdots\!53}a^{13}+\frac{71\!\cdots\!20}{10\!\cdots\!53}a^{12}+\frac{10\!\cdots\!40}{10\!\cdots\!53}a^{11}+\frac{34\!\cdots\!66}{10\!\cdots\!53}a^{10}+\frac{15\!\cdots\!76}{10\!\cdots\!53}a^{9}+\frac{45\!\cdots\!22}{10\!\cdots\!53}a^{8}+\frac{17\!\cdots\!26}{10\!\cdots\!53}a^{7}+\frac{12\!\cdots\!70}{10\!\cdots\!53}a^{6}+\frac{76\!\cdots\!77}{10\!\cdots\!53}a^{5}+\frac{63\!\cdots\!35}{10\!\cdots\!53}a^{4}+\frac{64\!\cdots\!03}{10\!\cdots\!53}a^{3}+\frac{88\!\cdots\!68}{10\!\cdots\!53}a^{2}+\frac{17\!\cdots\!04}{10\!\cdots\!53}a+\frac{11\!\cdots\!78}{10\!\cdots\!53}$, $\frac{15\!\cdots\!93}{10\!\cdots\!53}a^{35}-\frac{12\!\cdots\!04}{10\!\cdots\!53}a^{34}+\frac{26\!\cdots\!42}{10\!\cdots\!53}a^{33}-\frac{28\!\cdots\!51}{10\!\cdots\!53}a^{32}+\frac{33\!\cdots\!38}{10\!\cdots\!53}a^{31}-\frac{67\!\cdots\!78}{10\!\cdots\!53}a^{30}+\frac{35\!\cdots\!91}{10\!\cdots\!53}a^{29}-\frac{13\!\cdots\!49}{35\!\cdots\!63}a^{28}+\frac{37\!\cdots\!72}{10\!\cdots\!53}a^{27}-\frac{68\!\cdots\!98}{10\!\cdots\!53}a^{26}+\frac{19\!\cdots\!11}{10\!\cdots\!53}a^{25}-\frac{50\!\cdots\!49}{10\!\cdots\!53}a^{24}+\frac{83\!\cdots\!18}{10\!\cdots\!53}a^{23}-\frac{24\!\cdots\!74}{10\!\cdots\!53}a^{22}+\frac{32\!\cdots\!73}{10\!\cdots\!53}a^{21}-\frac{92\!\cdots\!18}{10\!\cdots\!53}a^{20}+\frac{11\!\cdots\!16}{10\!\cdots\!53}a^{19}-\frac{28\!\cdots\!49}{10\!\cdots\!53}a^{18}+\frac{21\!\cdots\!95}{10\!\cdots\!53}a^{17}-\frac{91\!\cdots\!70}{10\!\cdots\!53}a^{16}+\frac{36\!\cdots\!52}{10\!\cdots\!53}a^{15}+\frac{29\!\cdots\!57}{10\!\cdots\!53}a^{14}+\frac{44\!\cdots\!73}{10\!\cdots\!53}a^{13}+\frac{22\!\cdots\!89}{10\!\cdots\!53}a^{12}+\frac{39\!\cdots\!22}{10\!\cdots\!53}a^{11}+\frac{24\!\cdots\!07}{35\!\cdots\!63}a^{10}+\frac{38\!\cdots\!77}{10\!\cdots\!53}a^{9}+\frac{25\!\cdots\!19}{10\!\cdots\!53}a^{8}+\frac{31\!\cdots\!96}{10\!\cdots\!53}a^{7}-\frac{11\!\cdots\!27}{10\!\cdots\!53}a^{6}+\frac{37\!\cdots\!38}{10\!\cdots\!53}a^{5}-\frac{68\!\cdots\!45}{10\!\cdots\!53}a^{4}+\frac{33\!\cdots\!03}{10\!\cdots\!53}a^{3}-\frac{50\!\cdots\!33}{10\!\cdots\!53}a^{2}+\frac{13\!\cdots\!16}{82\!\cdots\!41}a-\frac{22\!\cdots\!72}{10\!\cdots\!53}$, $\frac{18\!\cdots\!92}{10\!\cdots\!53}a^{35}-\frac{22\!\cdots\!64}{10\!\cdots\!53}a^{34}+\frac{31\!\cdots\!94}{10\!\cdots\!53}a^{33}-\frac{47\!\cdots\!51}{10\!\cdots\!53}a^{32}+\frac{41\!\cdots\!65}{10\!\cdots\!53}a^{31}-\frac{24\!\cdots\!89}{10\!\cdots\!53}a^{30}+\frac{42\!\cdots\!95}{10\!\cdots\!53}a^{29}-\frac{18\!\cdots\!78}{10\!\cdots\!53}a^{28}+\frac{44\!\cdots\!62}{10\!\cdots\!53}a^{27}-\frac{27\!\cdots\!34}{10\!\cdots\!53}a^{26}+\frac{23\!\cdots\!63}{10\!\cdots\!53}a^{25}-\frac{15\!\cdots\!59}{10\!\cdots\!53}a^{24}+\frac{10\!\cdots\!72}{10\!\cdots\!53}a^{23}-\frac{70\!\cdots\!57}{10\!\cdots\!53}a^{22}+\frac{40\!\cdots\!83}{10\!\cdots\!53}a^{21}-\frac{27\!\cdots\!10}{10\!\cdots\!53}a^{20}+\frac{13\!\cdots\!32}{10\!\cdots\!53}a^{19}-\frac{90\!\cdots\!63}{10\!\cdots\!53}a^{18}+\frac{26\!\cdots\!52}{10\!\cdots\!53}a^{17}-\frac{10\!\cdots\!42}{10\!\cdots\!53}a^{16}+\frac{42\!\cdots\!20}{10\!\cdots\!53}a^{15}+\frac{16\!\cdots\!71}{10\!\cdots\!53}a^{14}+\frac{37\!\cdots\!70}{10\!\cdots\!53}a^{13}+\frac{41\!\cdots\!91}{10\!\cdots\!53}a^{12}+\frac{34\!\cdots\!80}{10\!\cdots\!53}a^{11}-\frac{10\!\cdots\!52}{10\!\cdots\!53}a^{10}-\frac{22\!\cdots\!36}{10\!\cdots\!53}a^{9}-\frac{14\!\cdots\!83}{10\!\cdots\!53}a^{8}-\frac{15\!\cdots\!87}{10\!\cdots\!53}a^{7}-\frac{32\!\cdots\!05}{10\!\cdots\!53}a^{6}+\frac{32\!\cdots\!70}{10\!\cdots\!53}a^{5}-\frac{15\!\cdots\!22}{10\!\cdots\!53}a^{4}+\frac{23\!\cdots\!46}{10\!\cdots\!53}a^{3}-\frac{12\!\cdots\!48}{10\!\cdots\!53}a^{2}-\frac{52\!\cdots\!29}{10\!\cdots\!53}a-\frac{29\!\cdots\!56}{10\!\cdots\!53}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1106493498513711.8 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{18}\cdot 1106493498513711.8 \cdot 462217}{10\cdot\sqrt{1134084166835624937413663701523229292665702790961273014545440673828125}}\cr\approx \mathstrut & 0.353760849209042 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^36 - x^35 + 17*x^34 - 22*x^33 + 217*x^32 - 92*x^31 + 2305*x^30 - 548*x^29 + 24025*x^28 - 9791*x^27 + 124680*x^26 - 59713*x^25 + 544902*x^24 - 274866*x^23 + 2154833*x^22 - 1067627*x^21 + 7334189*x^20 - 3450543*x^19 + 14127290*x^18 - 3108766*x^17 + 23851200*x^16 + 13376744*x^15 + 25175709*x^14 + 9088911*x^13 + 23034602*x^12 + 232605*x^11 + 2582197*x^10 + 124075*x^9 + 235179*x^8 - 72948*x^7 + 30848*x^6 - 6008*x^5 + 2425*x^4 - 368*x^3 + 56*x^2 - 7*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^36 - x^35 + 17*x^34 - 22*x^33 + 217*x^32 - 92*x^31 + 2305*x^30 - 548*x^29 + 24025*x^28 - 9791*x^27 + 124680*x^26 - 59713*x^25 + 544902*x^24 - 274866*x^23 + 2154833*x^22 - 1067627*x^21 + 7334189*x^20 - 3450543*x^19 + 14127290*x^18 - 3108766*x^17 + 23851200*x^16 + 13376744*x^15 + 25175709*x^14 + 9088911*x^13 + 23034602*x^12 + 232605*x^11 + 2582197*x^10 + 124075*x^9 + 235179*x^8 - 72948*x^7 + 30848*x^6 - 6008*x^5 + 2425*x^4 - 368*x^3 + 56*x^2 - 7*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^36 - x^35 + 17*x^34 - 22*x^33 + 217*x^32 - 92*x^31 + 2305*x^30 - 548*x^29 + 24025*x^28 - 9791*x^27 + 124680*x^26 - 59713*x^25 + 544902*x^24 - 274866*x^23 + 2154833*x^22 - 1067627*x^21 + 7334189*x^20 - 3450543*x^19 + 14127290*x^18 - 3108766*x^17 + 23851200*x^16 + 13376744*x^15 + 25175709*x^14 + 9088911*x^13 + 23034602*x^12 + 232605*x^11 + 2582197*x^10 + 124075*x^9 + 235179*x^8 - 72948*x^7 + 30848*x^6 - 6008*x^5 + 2425*x^4 - 368*x^3 + 56*x^2 - 7*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - x^35 + 17*x^34 - 22*x^33 + 217*x^32 - 92*x^31 + 2305*x^30 - 548*x^29 + 24025*x^28 - 9791*x^27 + 124680*x^26 - 59713*x^25 + 544902*x^24 - 274866*x^23 + 2154833*x^22 - 1067627*x^21 + 7334189*x^20 - 3450543*x^19 + 14127290*x^18 - 3108766*x^17 + 23851200*x^16 + 13376744*x^15 + 25175709*x^14 + 9088911*x^13 + 23034602*x^12 + 232605*x^11 + 2582197*x^10 + 124075*x^9 + 235179*x^8 - 72948*x^7 + 30848*x^6 - 6008*x^5 + 2425*x^4 - 368*x^3 + 56*x^2 - 7*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{36}$ (as 36T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 36
The 36 conjugacy class representatives for $C_{36}$
Character table for $C_{36}$

Intermediate fields

\(\Q(\sqrt{5}) \), 3.3.1369.1, \(\Q(\zeta_{5})\), 6.6.234270125.1, 9.9.3512479453921.1, 12.0.6860311433439453125.1, 18.18.24096702957455403051316876953125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $36$ $36$ R $36$ ${\href{/padicField/11.3.0.1}{3} }^{12}$ $36$ $36$ $18^{2}$ ${\href{/padicField/23.12.0.1}{12} }^{3}$ ${\href{/padicField/29.6.0.1}{6} }^{6}$ ${\href{/padicField/31.1.0.1}{1} }^{36}$ R ${\href{/padicField/41.9.0.1}{9} }^{4}$ ${\href{/padicField/43.4.0.1}{4} }^{9}$ ${\href{/padicField/47.12.0.1}{12} }^{3}$ $36$ $18^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display Deg $36$$4$$9$$27$
\(37\) Copy content Toggle raw display Deg $36$$9$$4$$32$