Normalized defining polynomial
\( x^{36} + 73 x^{34} + 2336 x^{32} + 43289 x^{30} + 517205 x^{28} + 4199763 x^{26} + 23818951 x^{24} + 95548021 x^{22} + 271775788 x^{20} + 545083627 x^{18} + 760556194 x^{16} + 721589086 x^{14} + 449489251 x^{12} + 174817626 x^{10} + 39695721 x^{8} + 4809386 x^{6} + 284846 x^{4} + 7592 x^{2} + 73 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{3} a^{24} + \frac{1}{3} a^{22} + \frac{1}{3} a^{20} + \frac{1}{3} a^{18} + \frac{1}{3} a^{16} + \frac{1}{3} a^{14} + \frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{25} + \frac{1}{3} a^{23} + \frac{1}{3} a^{21} + \frac{1}{3} a^{19} + \frac{1}{3} a^{17} + \frac{1}{3} a^{15} + \frac{1}{3} a^{13} + \frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{26} - \frac{1}{3}$, $\frac{1}{3} a^{27} - \frac{1}{3} a$, $\frac{1}{3} a^{28} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{29} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{30} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{31} - \frac{1}{3} a^{5}$, $\frac{1}{1155009} a^{32} - \frac{72782}{1155009} a^{30} - \frac{12223}{385003} a^{28} - \frac{66695}{1155009} a^{26} + \frac{16311}{385003} a^{24} + \frac{6446}{385003} a^{22} + \frac{154035}{385003} a^{20} - \frac{98490}{385003} a^{18} - \frac{148098}{385003} a^{16} + \frac{10880}{385003} a^{14} + \frac{50416}{385003} a^{12} + \frac{68616}{385003} a^{10} - \frac{26961}{385003} a^{8} - \frac{219523}{1155009} a^{6} - \frac{452599}{1155009} a^{4} + \frac{93050}{385003} a^{2} + \frac{217832}{1155009}$, $\frac{1}{1155009} a^{33} - \frac{72782}{1155009} a^{31} - \frac{12223}{385003} a^{29} - \frac{66695}{1155009} a^{27} + \frac{16311}{385003} a^{25} + \frac{6446}{385003} a^{23} + \frac{154035}{385003} a^{21} - \frac{98490}{385003} a^{19} - \frac{148098}{385003} a^{17} + \frac{10880}{385003} a^{15} + \frac{50416}{385003} a^{13} + \frac{68616}{385003} a^{11} - \frac{26961}{385003} a^{9} - \frac{219523}{1155009} a^{7} - \frac{452599}{1155009} a^{5} + \frac{93050}{385003} a^{3} + \frac{217832}{1155009} a$, $\frac{1}{5285805574248283688434996707459805960035567} a^{34} + \frac{54113107022089485460648710453674276}{1761935191416094562811665569153268653345189} a^{32} + \frac{207005013985922032814688224021542520605439}{5285805574248283688434996707459805960035567} a^{30} + \frac{230906093438007590891715387286689650646386}{5285805574248283688434996707459805960035567} a^{28} + \frac{145004252862232535565585081713837323003559}{1761935191416094562811665569153268653345189} a^{26} - \frac{356272769992596750000481339649346530248574}{5285805574248283688434996707459805960035567} a^{24} + \frac{2306186055588669552523257477382577070669661}{5285805574248283688434996707459805960035567} a^{22} - \frac{3477550585566347196040419576050568237742}{9489776614449342349075398038527479281931} a^{20} + \frac{1111872361858871550825261315462574367707942}{5285805574248283688434996707459805960035567} a^{18} - \frac{336275223504254314259047868635644150615464}{5285805574248283688434996707459805960035567} a^{16} - \frac{904909256442899980090251502204856026857173}{5285805574248283688434996707459805960035567} a^{14} - \frac{693671550456153145716393379544449067439833}{5285805574248283688434996707459805960035567} a^{12} + \frac{1233029331512940235053811978746088905897277}{5285805574248283688434996707459805960035567} a^{10} - \frac{142877566700816300816145611112270684486288}{1761935191416094562811665569153268653345189} a^{8} - \frac{2062459144759175773553941408817031814259210}{5285805574248283688434996707459805960035567} a^{6} + \frac{1953574209379796406949471729468340302180442}{5285805574248283688434996707459805960035567} a^{4} - \frac{593137114670017440915981418356283434951484}{5285805574248283688434996707459805960035567} a^{2} + \frac{1218387261729163490110092456326504517884374}{5285805574248283688434996707459805960035567}$, $\frac{1}{5285805574248283688434996707459805960035567} a^{35} + \frac{54113107022089485460648710453674276}{1761935191416094562811665569153268653345189} a^{33} + \frac{207005013985922032814688224021542520605439}{5285805574248283688434996707459805960035567} a^{31} + \frac{230906093438007590891715387286689650646386}{5285805574248283688434996707459805960035567} a^{29} + \frac{145004252862232535565585081713837323003559}{1761935191416094562811665569153268653345189} a^{27} - \frac{356272769992596750000481339649346530248574}{5285805574248283688434996707459805960035567} a^{25} + \frac{2306186055588669552523257477382577070669661}{5285805574248283688434996707459805960035567} a^{23} - \frac{3477550585566347196040419576050568237742}{9489776614449342349075398038527479281931} a^{21} + \frac{1111872361858871550825261315462574367707942}{5285805574248283688434996707459805960035567} a^{19} - \frac{336275223504254314259047868635644150615464}{5285805574248283688434996707459805960035567} a^{17} - \frac{904909256442899980090251502204856026857173}{5285805574248283688434996707459805960035567} a^{15} - \frac{693671550456153145716393379544449067439833}{5285805574248283688434996707459805960035567} a^{13} + \frac{1233029331512940235053811978746088905897277}{5285805574248283688434996707459805960035567} a^{11} - \frac{142877566700816300816145611112270684486288}{1761935191416094562811665569153268653345189} a^{9} - \frac{2062459144759175773553941408817031814259210}{5285805574248283688434996707459805960035567} a^{7} + \frac{1953574209379796406949471729468340302180442}{5285805574248283688434996707459805960035567} a^{5} - \frac{593137114670017440915981418356283434951484}{5285805574248283688434996707459805960035567} a^{3} + \frac{1218387261729163490110092456326504517884374}{5285805574248283688434996707459805960035567} a$
Class group and class number
Not computed
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 36 |
| The 36 conjugacy class representatives for $C_{36}$ |
| Character table for $C_{36}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{73}) \), 3.3.5329.1, 4.0.6224272.1, 6.6.2073071593.1, 9.9.806460091894081.1, 12.0.1285024504088001365512192.1, 18.18.47477585226700098686074966922953.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{12}$ | $36$ | ${\href{/LocalNumberField/7.12.0.1}{12} }^{3}$ | $36$ | $36$ | ${\href{/LocalNumberField/17.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{4}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{4}$ | $36$ | $36$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{4}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{4}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }^{3}$ | $36$ | $36$ | $36$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 73 | Data not computed | ||||||