Properties

Label 36.0.113...152.1
Degree $36$
Signature $[0, 18]$
Discriminant $1.131\times 10^{76}$
Root discriminant \(129.60\)
Ramified primes $2,73$
Class number not computed
Class group not computed
Galois group $C_{36}$ (as 36T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^36 + 73*x^34 + 2336*x^32 + 43289*x^30 + 517205*x^28 + 4199763*x^26 + 23818951*x^24 + 95548021*x^22 + 271775788*x^20 + 545083627*x^18 + 760556194*x^16 + 721589086*x^14 + 449489251*x^12 + 174817626*x^10 + 39695721*x^8 + 4809386*x^6 + 284846*x^4 + 7592*x^2 + 73)
 
gp: K = bnfinit(y^36 + 73*y^34 + 2336*y^32 + 43289*y^30 + 517205*y^28 + 4199763*y^26 + 23818951*y^24 + 95548021*y^22 + 271775788*y^20 + 545083627*y^18 + 760556194*y^16 + 721589086*y^14 + 449489251*y^12 + 174817626*y^10 + 39695721*y^8 + 4809386*y^6 + 284846*y^4 + 7592*y^2 + 73, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^36 + 73*x^34 + 2336*x^32 + 43289*x^30 + 517205*x^28 + 4199763*x^26 + 23818951*x^24 + 95548021*x^22 + 271775788*x^20 + 545083627*x^18 + 760556194*x^16 + 721589086*x^14 + 449489251*x^12 + 174817626*x^10 + 39695721*x^8 + 4809386*x^6 + 284846*x^4 + 7592*x^2 + 73);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 + 73*x^34 + 2336*x^32 + 43289*x^30 + 517205*x^28 + 4199763*x^26 + 23818951*x^24 + 95548021*x^22 + 271775788*x^20 + 545083627*x^18 + 760556194*x^16 + 721589086*x^14 + 449489251*x^12 + 174817626*x^10 + 39695721*x^8 + 4809386*x^6 + 284846*x^4 + 7592*x^2 + 73)
 

\( x^{36} + 73 x^{34} + 2336 x^{32} + 43289 x^{30} + 517205 x^{28} + 4199763 x^{26} + 23818951 x^{24} + \cdots + 73 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $36$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 18]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(11307847636660752290696972110442359259116305023758972734266350296999135281152\) \(\medspace = 2^{36}\cdot 73^{35}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(129.60\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 73^{35/36}\approx 129.59668343190836$
Ramified primes:   \(2\), \(73\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{73}) \)
$\card{ \Gal(K/\Q) }$:  $36$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(292=2^{2}\cdot 73\)
Dirichlet character group:    $\lbrace$$\chi_{292}(1,·)$, $\chi_{292}(3,·)$, $\chi_{292}(9,·)$, $\chi_{292}(267,·)$, $\chi_{292}(109,·)$, $\chi_{292}(143,·)$, $\chi_{292}(145,·)$, $\chi_{292}(19,·)$, $\chi_{292}(23,·)$, $\chi_{292}(27,·)$, $\chi_{292}(35,·)$, $\chi_{292}(37,·)$, $\chi_{292}(41,·)$, $\chi_{292}(171,·)$, $\chi_{292}(137,·)$, $\chi_{292}(57,·)$, $\chi_{292}(65,·)$, $\chi_{292}(67,·)$, $\chi_{292}(69,·)$, $\chi_{292}(201,·)$, $\chi_{292}(77,·)$, $\chi_{292}(79,·)$, $\chi_{292}(81,·)$, $\chi_{292}(89,·)$, $\chi_{292}(207,·)$, $\chi_{292}(221,·)$, $\chi_{292}(195,·)$, $\chi_{292}(231,·)$, $\chi_{292}(105,·)$, $\chi_{292}(237,·)$, $\chi_{292}(111,·)$, $\chi_{292}(243,·)$, $\chi_{292}(119,·)$, $\chi_{292}(217,·)$, $\chi_{292}(123,·)$, $\chi_{292}(127,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{131072}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{3}a^{24}+\frac{1}{3}a^{22}+\frac{1}{3}a^{20}+\frac{1}{3}a^{18}+\frac{1}{3}a^{16}+\frac{1}{3}a^{14}+\frac{1}{3}a^{12}+\frac{1}{3}a^{10}+\frac{1}{3}a^{8}+\frac{1}{3}a^{6}+\frac{1}{3}a^{4}+\frac{1}{3}a^{2}+\frac{1}{3}$, $\frac{1}{3}a^{25}+\frac{1}{3}a^{23}+\frac{1}{3}a^{21}+\frac{1}{3}a^{19}+\frac{1}{3}a^{17}+\frac{1}{3}a^{15}+\frac{1}{3}a^{13}+\frac{1}{3}a^{11}+\frac{1}{3}a^{9}+\frac{1}{3}a^{7}+\frac{1}{3}a^{5}+\frac{1}{3}a^{3}+\frac{1}{3}a$, $\frac{1}{3}a^{26}-\frac{1}{3}$, $\frac{1}{3}a^{27}-\frac{1}{3}a$, $\frac{1}{3}a^{28}-\frac{1}{3}a^{2}$, $\frac{1}{3}a^{29}-\frac{1}{3}a^{3}$, $\frac{1}{3}a^{30}-\frac{1}{3}a^{4}$, $\frac{1}{3}a^{31}-\frac{1}{3}a^{5}$, $\frac{1}{1155009}a^{32}-\frac{72782}{1155009}a^{30}-\frac{12223}{385003}a^{28}-\frac{66695}{1155009}a^{26}+\frac{16311}{385003}a^{24}+\frac{6446}{385003}a^{22}+\frac{154035}{385003}a^{20}-\frac{98490}{385003}a^{18}-\frac{148098}{385003}a^{16}+\frac{10880}{385003}a^{14}+\frac{50416}{385003}a^{12}+\frac{68616}{385003}a^{10}-\frac{26961}{385003}a^{8}-\frac{219523}{1155009}a^{6}-\frac{452599}{1155009}a^{4}+\frac{93050}{385003}a^{2}+\frac{217832}{1155009}$, $\frac{1}{1155009}a^{33}-\frac{72782}{1155009}a^{31}-\frac{12223}{385003}a^{29}-\frac{66695}{1155009}a^{27}+\frac{16311}{385003}a^{25}+\frac{6446}{385003}a^{23}+\frac{154035}{385003}a^{21}-\frac{98490}{385003}a^{19}-\frac{148098}{385003}a^{17}+\frac{10880}{385003}a^{15}+\frac{50416}{385003}a^{13}+\frac{68616}{385003}a^{11}-\frac{26961}{385003}a^{9}-\frac{219523}{1155009}a^{7}-\frac{452599}{1155009}a^{5}+\frac{93050}{385003}a^{3}+\frac{217832}{1155009}a$, $\frac{1}{52\!\cdots\!67}a^{34}+\frac{54\!\cdots\!76}{17\!\cdots\!89}a^{32}+\frac{20\!\cdots\!39}{52\!\cdots\!67}a^{30}+\frac{23\!\cdots\!86}{52\!\cdots\!67}a^{28}+\frac{14\!\cdots\!59}{17\!\cdots\!89}a^{26}-\frac{35\!\cdots\!74}{52\!\cdots\!67}a^{24}+\frac{23\!\cdots\!61}{52\!\cdots\!67}a^{22}-\frac{34\!\cdots\!42}{94\!\cdots\!31}a^{20}+\frac{11\!\cdots\!42}{52\!\cdots\!67}a^{18}-\frac{33\!\cdots\!64}{52\!\cdots\!67}a^{16}-\frac{90\!\cdots\!73}{52\!\cdots\!67}a^{14}-\frac{69\!\cdots\!33}{52\!\cdots\!67}a^{12}+\frac{12\!\cdots\!77}{52\!\cdots\!67}a^{10}-\frac{14\!\cdots\!88}{17\!\cdots\!89}a^{8}-\frac{20\!\cdots\!10}{52\!\cdots\!67}a^{6}+\frac{19\!\cdots\!42}{52\!\cdots\!67}a^{4}-\frac{59\!\cdots\!84}{52\!\cdots\!67}a^{2}+\frac{12\!\cdots\!74}{52\!\cdots\!67}$, $\frac{1}{52\!\cdots\!67}a^{35}+\frac{54\!\cdots\!76}{17\!\cdots\!89}a^{33}+\frac{20\!\cdots\!39}{52\!\cdots\!67}a^{31}+\frac{23\!\cdots\!86}{52\!\cdots\!67}a^{29}+\frac{14\!\cdots\!59}{17\!\cdots\!89}a^{27}-\frac{35\!\cdots\!74}{52\!\cdots\!67}a^{25}+\frac{23\!\cdots\!61}{52\!\cdots\!67}a^{23}-\frac{34\!\cdots\!42}{94\!\cdots\!31}a^{21}+\frac{11\!\cdots\!42}{52\!\cdots\!67}a^{19}-\frac{33\!\cdots\!64}{52\!\cdots\!67}a^{17}-\frac{90\!\cdots\!73}{52\!\cdots\!67}a^{15}-\frac{69\!\cdots\!33}{52\!\cdots\!67}a^{13}+\frac{12\!\cdots\!77}{52\!\cdots\!67}a^{11}-\frac{14\!\cdots\!88}{17\!\cdots\!89}a^{9}-\frac{20\!\cdots\!10}{52\!\cdots\!67}a^{7}+\frac{19\!\cdots\!42}{52\!\cdots\!67}a^{5}-\frac{59\!\cdots\!84}{52\!\cdots\!67}a^{3}+\frac{12\!\cdots\!74}{52\!\cdots\!67}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $3$

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $17$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^36 + 73*x^34 + 2336*x^32 + 43289*x^30 + 517205*x^28 + 4199763*x^26 + 23818951*x^24 + 95548021*x^22 + 271775788*x^20 + 545083627*x^18 + 760556194*x^16 + 721589086*x^14 + 449489251*x^12 + 174817626*x^10 + 39695721*x^8 + 4809386*x^6 + 284846*x^4 + 7592*x^2 + 73)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^36 + 73*x^34 + 2336*x^32 + 43289*x^30 + 517205*x^28 + 4199763*x^26 + 23818951*x^24 + 95548021*x^22 + 271775788*x^20 + 545083627*x^18 + 760556194*x^16 + 721589086*x^14 + 449489251*x^12 + 174817626*x^10 + 39695721*x^8 + 4809386*x^6 + 284846*x^4 + 7592*x^2 + 73, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^36 + 73*x^34 + 2336*x^32 + 43289*x^30 + 517205*x^28 + 4199763*x^26 + 23818951*x^24 + 95548021*x^22 + 271775788*x^20 + 545083627*x^18 + 760556194*x^16 + 721589086*x^14 + 449489251*x^12 + 174817626*x^10 + 39695721*x^8 + 4809386*x^6 + 284846*x^4 + 7592*x^2 + 73);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 + 73*x^34 + 2336*x^32 + 43289*x^30 + 517205*x^28 + 4199763*x^26 + 23818951*x^24 + 95548021*x^22 + 271775788*x^20 + 545083627*x^18 + 760556194*x^16 + 721589086*x^14 + 449489251*x^12 + 174817626*x^10 + 39695721*x^8 + 4809386*x^6 + 284846*x^4 + 7592*x^2 + 73);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{36}$ (as 36T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 36
The 36 conjugacy class representatives for $C_{36}$
Character table for $C_{36}$ is not computed

Intermediate fields

\(\Q(\sqrt{73}) \), 3.3.5329.1, 4.0.6224272.1, 6.6.2073071593.1, 9.9.806460091894081.1, 12.0.1285024504088001365512192.1, 18.18.47477585226700098686074966922953.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.3.0.1}{3} }^{12}$ $36$ ${\href{/padicField/7.12.0.1}{12} }^{3}$ $36$ $36$ ${\href{/padicField/17.12.0.1}{12} }^{3}$ ${\href{/padicField/19.9.0.1}{9} }^{4}$ ${\href{/padicField/23.9.0.1}{9} }^{4}$ $36$ $36$ ${\href{/padicField/37.9.0.1}{9} }^{4}$ ${\href{/padicField/41.9.0.1}{9} }^{4}$ ${\href{/padicField/43.12.0.1}{12} }^{3}$ $36$ $36$ $36$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.18.18.115$x^{18} + 18 x^{17} + 162 x^{16} + 960 x^{15} + 4320 x^{14} + 16128 x^{13} + 53696 x^{12} + 165120 x^{11} + 449824 x^{10} + 1006400 x^{9} + 1826368 x^{8} + 2905088 x^{7} + 3317760 x^{6} - 418816 x^{5} - 6684672 x^{4} - 4984832 x^{3} + 2483456 x^{2} + 3566080 x + 1829376$$2$$9$$18$$C_{18}$$[2]^{9}$
2.18.18.115$x^{18} + 18 x^{17} + 162 x^{16} + 960 x^{15} + 4320 x^{14} + 16128 x^{13} + 53696 x^{12} + 165120 x^{11} + 449824 x^{10} + 1006400 x^{9} + 1826368 x^{8} + 2905088 x^{7} + 3317760 x^{6} - 418816 x^{5} - 6684672 x^{4} - 4984832 x^{3} + 2483456 x^{2} + 3566080 x + 1829376$$2$$9$$18$$C_{18}$$[2]^{9}$
\(73\) Copy content Toggle raw display Deg $36$$36$$1$$35$