Normalized defining polynomial
\( x^{36} - x^{35} + 3 x^{34} - 4 x^{33} + 9 x^{32} - 14 x^{31} + 28 x^{30} - 47 x^{29} + 89 x^{28} - 155 x^{27} + 286 x^{26} - 507 x^{25} + 924 x^{24} + 442 x^{23} + 899 x^{22} + 909 x^{21} + 1331 x^{20} + 1386 x^{19} + 2185 x^{18} + 1918 x^{17} + 3838 x^{16} + 2183 x^{15} + 7411 x^{14} + 793 x^{13} + 16212 x^{12} - 7215 x^{11} + 3211 x^{10} - 1429 x^{9} + 636 x^{8} - 283 x^{7} + 126 x^{6} - 56 x^{5} + 25 x^{4} - 11 x^{3} + 5 x^{2} - 2 x + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3} a^{13} - \frac{1}{3}$, $\frac{1}{3} a^{14} - \frac{1}{3} a$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{18} - \frac{1}{3} a^{5}$, $\frac{1}{3} a^{19} - \frac{1}{3} a^{6}$, $\frac{1}{3} a^{20} - \frac{1}{3} a^{7}$, $\frac{1}{3} a^{21} - \frac{1}{3} a^{8}$, $\frac{1}{3} a^{22} - \frac{1}{3} a^{9}$, $\frac{1}{3} a^{23} - \frac{1}{3} a^{10}$, $\frac{1}{3} a^{24} - \frac{1}{3} a^{11}$, $\frac{1}{1257987} a^{25} - \frac{35565}{419329} a^{24} - \frac{120667}{1257987} a^{23} - \frac{92722}{1257987} a^{22} + \frac{54674}{419329} a^{21} - \frac{50804}{1257987} a^{20} - \frac{44401}{419329} a^{19} + \frac{195617}{1257987} a^{18} - \frac{31166}{419329} a^{17} - \frac{22600}{419329} a^{16} + \frac{76421}{1257987} a^{15} + \frac{113810}{1257987} a^{14} - \frac{28768}{1257987} a^{13} - \frac{461542}{1257987} a^{12} + \frac{107525}{419329} a^{11} + \frac{546037}{1257987} a^{10} - \frac{362429}{1257987} a^{9} + \frac{33254}{419329} a^{8} + \frac{560075}{1257987} a^{7} - \frac{101217}{419329} a^{6} + \frac{265576}{1257987} a^{5} + \frac{175285}{419329} a^{4} + \frac{40325}{419329} a^{3} - \frac{61676}{1257987} a^{2} + \frac{410152}{1257987} a - \frac{412529}{1257987}$, $\frac{1}{3773961} a^{26} + \frac{463636}{3773961} a^{13} + \frac{86830}{3773961}$, $\frac{1}{3773961} a^{27} + \frac{463636}{3773961} a^{14} + \frac{86830}{3773961} a$, $\frac{1}{3773961} a^{28} + \frac{463636}{3773961} a^{15} + \frac{86830}{3773961} a^{2}$, $\frac{1}{3773961} a^{29} + \frac{463636}{3773961} a^{16} + \frac{86830}{3773961} a^{3}$, $\frac{1}{3773961} a^{30} + \frac{463636}{3773961} a^{17} + \frac{86830}{3773961} a^{4}$, $\frac{1}{3773961} a^{31} + \frac{463636}{3773961} a^{18} + \frac{86830}{3773961} a^{5}$, $\frac{1}{3773961} a^{32} + \frac{463636}{3773961} a^{19} + \frac{86830}{3773961} a^{6}$, $\frac{1}{3773961} a^{33} + \frac{463636}{3773961} a^{20} + \frac{86830}{3773961} a^{7}$, $\frac{1}{3773961} a^{34} + \frac{463636}{3773961} a^{21} + \frac{86830}{3773961} a^{8}$, $\frac{1}{3773961} a^{35} + \frac{463636}{3773961} a^{22} + \frac{86830}{3773961} a^{9}$
Class group and class number
$C_{2}\times C_{74}$, which has order $148$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{332648}{3773961} a^{35} - \frac{332648}{1257987} a^{34} + \frac{1330592}{3773961} a^{33} - \frac{332648}{419329} a^{32} + \frac{4657072}{3773961} a^{31} - \frac{9314144}{3773961} a^{30} + \frac{15634456}{3773961} a^{29} - \frac{29605672}{3773961} a^{28} + \frac{51560440}{3773961} a^{27} - \frac{95137328}{3773961} a^{26} + \frac{56217512}{1257987} a^{25} - \frac{102455584}{1257987} a^{24} + \frac{183178099}{1257987} a^{23} - \frac{299050552}{3773961} a^{22} - \frac{33597448}{419329} a^{21} - \frac{442754488}{3773961} a^{20} - \frac{51227792}{419329} a^{19} - \frac{726835880}{3773961} a^{18} - \frac{638018864}{3773961} a^{17} - \frac{1276703024}{3773961} a^{16} - \frac{726170584}{3773961} a^{15} - \frac{2465254328}{3773961} a^{14} - \frac{263789864}{3773961} a^{13} - \frac{1797629792}{1257987} a^{12} + \frac{800018440}{1257987} a^{11} - \frac{4483351483}{1257987} a^{10} + \frac{475353992}{3773961} a^{9} - \frac{70521376}{1257987} a^{8} + \frac{94139384}{3773961} a^{7} - \frac{4657072}{419329} a^{6} + \frac{18628288}{3773961} a^{5} - \frac{8316200}{3773961} a^{4} + \frac{3659128}{3773961} a^{3} - \frac{1663240}{3773961} a^{2} + \frac{665296}{3773961} a - \frac{332648}{3773961} \) (order $26$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4866030378143.887 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_{12}$ (as 36T3):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_3\times C_{12}$ |
| Character table for $C_3\times C_{12}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }^{3}$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $13$ | 13.12.11.4 | $x^{12} - 832$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |
| 13.12.11.4 | $x^{12} - 832$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ | |
| 13.12.11.4 | $x^{12} - 832$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ | |