Properties

Label 36.0.107...569.1
Degree $36$
Signature $[0, 18]$
Discriminant $1.071\times 10^{57}$
Root discriminant \(38.38\)
Ramified primes $3,23,71$
Class number $54$ (GRH)
Class group [54] (GRH)
Galois group $C_2\times A_4\times D_6$ (as 36T334)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^36 - 3*x^35 - 9*x^34 + 42*x^33 + 6*x^32 - 333*x^31 + 591*x^30 + 1194*x^29 - 4608*x^28 - 668*x^27 + 17499*x^26 - 15678*x^25 - 36231*x^24 + 53814*x^23 + 124803*x^22 - 24558*x^21 - 687768*x^20 - 167544*x^19 + 2193193*x^18 + 720423*x^17 - 3444336*x^16 - 2946924*x^15 + 2834649*x^14 + 9321507*x^13 - 5570397*x^12 - 13865742*x^11 + 18532800*x^10 + 4607712*x^9 - 26329536*x^8 + 9681120*x^7 + 19051200*x^6 - 18009216*x^5 - 1866240*x^4 + 11943936*x^3 - 4478976*x^2 - 4478976*x + 2985984)
 
gp: K = bnfinit(y^36 - 3*y^35 - 9*y^34 + 42*y^33 + 6*y^32 - 333*y^31 + 591*y^30 + 1194*y^29 - 4608*y^28 - 668*y^27 + 17499*y^26 - 15678*y^25 - 36231*y^24 + 53814*y^23 + 124803*y^22 - 24558*y^21 - 687768*y^20 - 167544*y^19 + 2193193*y^18 + 720423*y^17 - 3444336*y^16 - 2946924*y^15 + 2834649*y^14 + 9321507*y^13 - 5570397*y^12 - 13865742*y^11 + 18532800*y^10 + 4607712*y^9 - 26329536*y^8 + 9681120*y^7 + 19051200*y^6 - 18009216*y^5 - 1866240*y^4 + 11943936*y^3 - 4478976*y^2 - 4478976*y + 2985984, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^36 - 3*x^35 - 9*x^34 + 42*x^33 + 6*x^32 - 333*x^31 + 591*x^30 + 1194*x^29 - 4608*x^28 - 668*x^27 + 17499*x^26 - 15678*x^25 - 36231*x^24 + 53814*x^23 + 124803*x^22 - 24558*x^21 - 687768*x^20 - 167544*x^19 + 2193193*x^18 + 720423*x^17 - 3444336*x^16 - 2946924*x^15 + 2834649*x^14 + 9321507*x^13 - 5570397*x^12 - 13865742*x^11 + 18532800*x^10 + 4607712*x^9 - 26329536*x^8 + 9681120*x^7 + 19051200*x^6 - 18009216*x^5 - 1866240*x^4 + 11943936*x^3 - 4478976*x^2 - 4478976*x + 2985984);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - 3*x^35 - 9*x^34 + 42*x^33 + 6*x^32 - 333*x^31 + 591*x^30 + 1194*x^29 - 4608*x^28 - 668*x^27 + 17499*x^26 - 15678*x^25 - 36231*x^24 + 53814*x^23 + 124803*x^22 - 24558*x^21 - 687768*x^20 - 167544*x^19 + 2193193*x^18 + 720423*x^17 - 3444336*x^16 - 2946924*x^15 + 2834649*x^14 + 9321507*x^13 - 5570397*x^12 - 13865742*x^11 + 18532800*x^10 + 4607712*x^9 - 26329536*x^8 + 9681120*x^7 + 19051200*x^6 - 18009216*x^5 - 1866240*x^4 + 11943936*x^3 - 4478976*x^2 - 4478976*x + 2985984)
 

\( x^{36} - 3 x^{35} - 9 x^{34} + 42 x^{33} + 6 x^{32} - 333 x^{31} + 591 x^{30} + 1194 x^{29} + \cdots + 2985984 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $36$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 18]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(1071030693901388898753512531277917413271669334372589558569\) \(\medspace = 3^{62}\cdot 23^{12}\cdot 71^{6}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(38.38\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{31/18}23^{1/2}71^{1/2}\approx 268.0414261188952$
Ramified primes:   \(3\), \(23\), \(71\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $4$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is a CM field.
Reflex fields:  unavailable$^{131072}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3}a^{12}-\frac{1}{3}a^{3}$, $\frac{1}{3}a^{13}-\frac{1}{3}a^{4}$, $\frac{1}{3}a^{14}-\frac{1}{3}a^{5}$, $\frac{1}{3}a^{15}-\frac{1}{3}a^{6}$, $\frac{1}{9}a^{16}+\frac{1}{9}a^{15}+\frac{1}{9}a^{14}+\frac{1}{3}a^{11}-\frac{1}{3}a^{10}-\frac{1}{3}a^{9}-\frac{1}{3}a^{8}+\frac{2}{9}a^{7}+\frac{2}{9}a^{6}+\frac{2}{9}a^{5}-\frac{1}{3}a^{4}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}$, $\frac{1}{9}a^{17}-\frac{1}{9}a^{14}+\frac{1}{3}a^{11}-\frac{4}{9}a^{8}+\frac{4}{9}a^{5}-\frac{1}{3}a^{2}$, $\frac{1}{9}a^{18}-\frac{1}{9}a^{15}-\frac{4}{9}a^{9}+\frac{4}{9}a^{6}$, $\frac{1}{9}a^{19}+\frac{1}{9}a^{15}+\frac{1}{9}a^{14}+\frac{1}{3}a^{11}+\frac{2}{9}a^{10}-\frac{1}{3}a^{9}-\frac{1}{3}a^{8}-\frac{1}{3}a^{7}+\frac{2}{9}a^{6}+\frac{2}{9}a^{5}-\frac{1}{3}a^{4}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}$, $\frac{1}{9}a^{20}-\frac{1}{9}a^{14}-\frac{1}{9}a^{11}+\frac{4}{9}a^{5}-\frac{1}{3}a^{2}$, $\frac{1}{9}a^{21}-\frac{1}{9}a^{15}-\frac{1}{9}a^{12}+\frac{4}{9}a^{6}-\frac{1}{3}a^{3}$, $\frac{1}{9}a^{22}+\frac{1}{9}a^{15}+\frac{1}{9}a^{14}-\frac{1}{9}a^{13}+\frac{1}{3}a^{11}-\frac{1}{3}a^{10}-\frac{1}{3}a^{9}-\frac{1}{3}a^{8}-\frac{1}{3}a^{7}+\frac{2}{9}a^{6}+\frac{2}{9}a^{5}+\frac{1}{3}a^{4}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}$, $\frac{1}{9}a^{23}+\frac{1}{9}a^{14}+\frac{1}{3}a^{11}-\frac{2}{9}a^{5}-\frac{1}{3}a^{2}$, $\frac{1}{9}a^{24}+\frac{1}{9}a^{15}-\frac{2}{9}a^{6}$, $\frac{1}{54}a^{25}-\frac{1}{18}a^{24}-\frac{1}{18}a^{23}-\frac{1}{18}a^{20}-\frac{1}{18}a^{19}-\frac{1}{27}a^{16}-\frac{1}{18}a^{15}-\frac{1}{18}a^{13}+\frac{7}{18}a^{11}-\frac{4}{9}a^{10}+\frac{19}{54}a^{7}-\frac{7}{18}a^{6}-\frac{1}{9}a^{5}+\frac{2}{9}a^{4}-\frac{1}{2}a^{3}-\frac{1}{6}a^{2}+\frac{1}{6}a$, $\frac{1}{108}a^{26}-\frac{1}{108}a^{25}-\frac{1}{36}a^{24}-\frac{1}{18}a^{22}+\frac{1}{36}a^{21}-\frac{1}{36}a^{20}+\frac{1}{27}a^{17}-\frac{1}{108}a^{16}-\frac{1}{36}a^{14}+\frac{5}{36}a^{12}+\frac{1}{9}a^{11}-\frac{1}{3}a^{10}+\frac{1}{3}a^{9}-\frac{23}{108}a^{8}+\frac{29}{108}a^{7}+\frac{5}{18}a^{6}+\frac{4}{9}a^{5}-\frac{1}{36}a^{4}+\frac{1}{12}a^{3}+\frac{1}{12}a^{2}-\frac{1}{3}a$, $\frac{1}{648}a^{27}-\frac{1}{216}a^{26}+\frac{1}{216}a^{25}+\frac{1}{108}a^{24}-\frac{5}{108}a^{23}+\frac{1}{24}a^{22}+\frac{5}{216}a^{21}+\frac{1}{108}a^{20}-\frac{1}{18}a^{19}-\frac{5}{162}a^{18}+\frac{1}{216}a^{17}-\frac{1}{108}a^{16}+\frac{31}{216}a^{15}+\frac{5}{108}a^{14}-\frac{1}{72}a^{13}-\frac{1}{108}a^{12}+\frac{25}{54}a^{11}-\frac{1}{9}a^{10}+\frac{145}{648}a^{9}+\frac{7}{72}a^{8}+\frac{25}{54}a^{7}-\frac{2}{9}a^{6}-\frac{23}{72}a^{5}-\frac{5}{72}a^{4}+\frac{5}{24}a^{3}+\frac{1}{12}a^{2}+\frac{1}{6}a+\frac{1}{3}$, $\frac{1}{3888}a^{28}-\frac{1}{1296}a^{27}-\frac{1}{432}a^{26}-\frac{5}{648}a^{25}-\frac{35}{648}a^{24}-\frac{13}{432}a^{23}+\frac{53}{1296}a^{22}-\frac{17}{648}a^{21}-\frac{1}{54}a^{20}-\frac{5}{972}a^{19}-\frac{71}{1296}a^{18}-\frac{7}{216}a^{17}+\frac{67}{1296}a^{16}-\frac{67}{648}a^{15}-\frac{53}{432}a^{14}-\frac{97}{648}a^{13}+\frac{17}{162}a^{12}+\frac{2}{27}a^{11}-\frac{71}{3888}a^{10}-\frac{65}{432}a^{9}+\frac{4}{9}a^{8}-\frac{11}{36}a^{7}-\frac{61}{144}a^{6}-\frac{23}{144}a^{5}-\frac{13}{48}a^{4}-\frac{1}{8}a^{3}+\frac{1}{6}a^{2}-\frac{5}{18}a$, $\frac{1}{7776}a^{29}-\frac{1}{7776}a^{28}-\frac{1}{2592}a^{27}-\frac{1}{648}a^{26}-\frac{1}{432}a^{25}+\frac{61}{2592}a^{24}-\frac{1}{2592}a^{23}+\frac{1}{72}a^{22}-\frac{13}{324}a^{21}+\frac{31}{1944}a^{20}-\frac{253}{7776}a^{19}+\frac{1}{108}a^{18}-\frac{53}{2592}a^{17}-\frac{1}{27}a^{16}+\frac{233}{2592}a^{15}+\frac{8}{81}a^{14}-\frac{1}{18}a^{13}-\frac{1}{162}a^{12}+\frac{1945}{7776}a^{11}-\frac{2023}{7776}a^{10}+\frac{23}{1296}a^{9}+\frac{25}{108}a^{8}+\frac{25}{864}a^{7}-\frac{97}{288}a^{6}+\frac{47}{288}a^{5}+\frac{13}{72}a^{4}+\frac{1}{12}a^{3}-\frac{11}{36}a^{2}-\frac{1}{9}a+\frac{1}{3}$, $\frac{1}{46656}a^{30}-\frac{1}{15552}a^{29}+\frac{1}{15552}a^{28}+\frac{5}{7776}a^{27}-\frac{29}{7776}a^{26}-\frac{5}{5184}a^{25}+\frac{557}{15552}a^{24}+\frac{421}{7776}a^{23}-\frac{1}{144}a^{22}-\frac{383}{11664}a^{21}+\frac{409}{15552}a^{20}+\frac{83}{7776}a^{19}+\frac{245}{5184}a^{18}+\frac{89}{7776}a^{17}-\frac{217}{5184}a^{16}+\frac{83}{7776}a^{15}-\frac{275}{3888}a^{14}-\frac{11}{72}a^{13}-\frac{1799}{46656}a^{12}-\frac{571}{1728}a^{11}+\frac{1621}{3888}a^{10}+\frac{104}{243}a^{9}+\frac{403}{1728}a^{8}-\frac{157}{576}a^{7}-\frac{43}{192}a^{6}+\frac{15}{32}a^{5}-\frac{7}{48}a^{4}-\frac{13}{27}a^{3}+\frac{1}{12}a^{2}-\frac{5}{18}a-\frac{2}{9}$, $\frac{1}{93312}a^{31}-\frac{1}{93312}a^{30}-\frac{1}{31104}a^{29}-\frac{1}{7776}a^{28}+\frac{5}{15552}a^{27}+\frac{13}{31104}a^{26}-\frac{145}{31104}a^{25}+\frac{11}{2592}a^{24}+\frac{215}{3888}a^{23}-\frac{1157}{23328}a^{22}+\frac{3059}{93312}a^{21}-\frac{55}{1296}a^{20}+\frac{1387}{31104}a^{19}-\frac{1}{243}a^{18}+\frac{1721}{31104}a^{17}+\frac{11}{243}a^{16}+\frac{23}{324}a^{15}-\frac{241}{1944}a^{14}-\frac{14039}{93312}a^{13}-\frac{7495}{93312}a^{12}+\frac{5303}{15552}a^{11}-\frac{215}{1296}a^{10}+\frac{10747}{31104}a^{9}+\frac{143}{3456}a^{8}+\frac{1423}{3456}a^{7}+\frac{29}{96}a^{6}+\frac{47}{144}a^{5}+\frac{91}{432}a^{4}+\frac{67}{216}a^{3}+\frac{5}{18}a^{2}+\frac{1}{3}a-\frac{2}{9}$, $\frac{1}{186624}a^{32}-\frac{1}{186624}a^{31}+\frac{1}{186624}a^{30}+\frac{1}{10368}a^{28}+\frac{29}{62208}a^{27}+\frac{103}{62208}a^{26}+\frac{7}{864}a^{25}+\frac{19}{5184}a^{24}-\frac{1241}{46656}a^{23}-\frac{6013}{186624}a^{22}-\frac{253}{23328}a^{21}-\frac{1169}{62208}a^{20}-\frac{31}{1296}a^{19}+\frac{1781}{62208}a^{18}-\frac{19}{3888}a^{17}-\frac{59}{1728}a^{16}-\frac{47}{648}a^{15}+\frac{17113}{186624}a^{14}-\frac{25639}{186624}a^{13}+\frac{3959}{93312}a^{12}-\frac{7723}{15552}a^{11}+\frac{10289}{20736}a^{10}-\frac{19369}{62208}a^{9}+\frac{2395}{6912}a^{8}+\frac{17}{36}a^{7}+\frac{73}{192}a^{6}-\frac{371}{864}a^{5}-\frac{25}{216}a^{4}-\frac{1}{108}a^{3}-\frac{5}{36}a^{2}-\frac{1}{6}a+\frac{1}{9}$, $\frac{1}{1119744}a^{33}-\frac{1}{373248}a^{32}+\frac{1}{373248}a^{31}+\frac{1}{186624}a^{30}+\frac{7}{186624}a^{29}+\frac{1}{41472}a^{28}-\frac{115}{373248}a^{27}-\frac{467}{186624}a^{26}+\frac{47}{10368}a^{25}-\frac{9869}{279936}a^{24}-\frac{71}{373248}a^{23}+\frac{2963}{186624}a^{22}-\frac{15233}{373248}a^{21}-\frac{2707}{186624}a^{20}-\frac{6233}{124416}a^{19}-\frac{10321}{186624}a^{18}-\frac{3683}{93312}a^{17}-\frac{67}{1296}a^{16}-\frac{34055}{1119744}a^{15}+\frac{14479}{124416}a^{14}-\frac{8027}{93312}a^{13}+\frac{181}{15552}a^{12}+\frac{22177}{124416}a^{11}+\frac{55499}{124416}a^{10}-\frac{2953}{124416}a^{9}+\frac{827}{6912}a^{8}+\frac{1133}{3456}a^{7}-\frac{365}{5184}a^{6}+\frac{127}{288}a^{5}+\frac{115}{432}a^{4}+\frac{17}{36}a^{3}+\frac{5}{18}a^{2}+\frac{1}{18}a-\frac{4}{9}$, $\frac{1}{22\!\cdots\!28}a^{34}+\frac{11\!\cdots\!23}{25\!\cdots\!92}a^{33}+\frac{17\!\cdots\!19}{76\!\cdots\!76}a^{32}-\frac{17\!\cdots\!71}{15\!\cdots\!12}a^{31}+\frac{75\!\cdots\!21}{38\!\cdots\!88}a^{30}+\frac{15\!\cdots\!75}{25\!\cdots\!92}a^{29}+\frac{65\!\cdots\!39}{76\!\cdots\!76}a^{28}-\frac{48\!\cdots\!07}{47\!\cdots\!36}a^{27}+\frac{36\!\cdots\!53}{15\!\cdots\!12}a^{26}-\frac{44\!\cdots\!39}{57\!\cdots\!32}a^{25}+\frac{19\!\cdots\!45}{76\!\cdots\!76}a^{24}+\frac{99\!\cdots\!91}{19\!\cdots\!44}a^{23}-\frac{19\!\cdots\!45}{76\!\cdots\!76}a^{22}+\frac{86\!\cdots\!21}{19\!\cdots\!44}a^{21}-\frac{11\!\cdots\!93}{25\!\cdots\!92}a^{20}-\frac{32\!\cdots\!49}{19\!\cdots\!44}a^{19}-\frac{58\!\cdots\!81}{11\!\cdots\!84}a^{18}+\frac{38\!\cdots\!37}{31\!\cdots\!24}a^{17}+\frac{64\!\cdots\!09}{22\!\cdots\!28}a^{16}-\frac{51\!\cdots\!17}{76\!\cdots\!76}a^{15}-\frac{60\!\cdots\!31}{38\!\cdots\!88}a^{14}-\frac{10\!\cdots\!67}{95\!\cdots\!72}a^{13}-\frac{20\!\cdots\!31}{25\!\cdots\!92}a^{12}-\frac{75\!\cdots\!79}{25\!\cdots\!92}a^{11}-\frac{11\!\cdots\!47}{25\!\cdots\!92}a^{10}+\frac{29\!\cdots\!97}{10\!\cdots\!08}a^{9}-\frac{22\!\cdots\!77}{58\!\cdots\!56}a^{8}+\frac{22\!\cdots\!21}{52\!\cdots\!04}a^{7}+\frac{91\!\cdots\!33}{17\!\cdots\!68}a^{6}+\frac{25\!\cdots\!35}{11\!\cdots\!48}a^{5}-\frac{19\!\cdots\!03}{44\!\cdots\!92}a^{4}+\frac{36\!\cdots\!08}{91\!\cdots\!79}a^{3}+\frac{12\!\cdots\!79}{36\!\cdots\!16}a^{2}+\frac{10\!\cdots\!93}{18\!\cdots\!58}a-\frac{91\!\cdots\!68}{30\!\cdots\!93}$, $\frac{1}{14\!\cdots\!04}a^{35}+\frac{1674781047629}{14\!\cdots\!04}a^{34}+\frac{32\!\cdots\!47}{16\!\cdots\!56}a^{33}+\frac{48\!\cdots\!61}{24\!\cdots\!84}a^{32}+\frac{34\!\cdots\!11}{24\!\cdots\!84}a^{31}-\frac{34\!\cdots\!07}{49\!\cdots\!68}a^{30}-\frac{74\!\cdots\!47}{49\!\cdots\!68}a^{29}-\frac{28\!\cdots\!63}{27\!\cdots\!76}a^{28}-\frac{33\!\cdots\!21}{12\!\cdots\!92}a^{27}+\frac{38\!\cdots\!43}{37\!\cdots\!76}a^{26}+\frac{89\!\cdots\!71}{14\!\cdots\!04}a^{25}-\frac{12\!\cdots\!29}{24\!\cdots\!84}a^{24}+\frac{20\!\cdots\!15}{49\!\cdots\!68}a^{23}-\frac{29\!\cdots\!23}{24\!\cdots\!84}a^{22}+\frac{89\!\cdots\!45}{49\!\cdots\!68}a^{21}-\frac{97\!\cdots\!69}{24\!\cdots\!84}a^{20}+\frac{21\!\cdots\!15}{41\!\cdots\!64}a^{19}+\frac{16\!\cdots\!89}{31\!\cdots\!48}a^{18}-\frac{74\!\cdots\!63}{14\!\cdots\!04}a^{17}+\frac{39\!\cdots\!31}{14\!\cdots\!04}a^{16}-\frac{17\!\cdots\!15}{12\!\cdots\!92}a^{15}-\frac{20\!\cdots\!59}{20\!\cdots\!32}a^{14}-\frac{65\!\cdots\!17}{49\!\cdots\!68}a^{13}-\frac{11\!\cdots\!61}{16\!\cdots\!56}a^{12}-\frac{37\!\cdots\!01}{16\!\cdots\!56}a^{11}+\frac{30\!\cdots\!15}{82\!\cdots\!28}a^{10}+\frac{61\!\cdots\!75}{13\!\cdots\!88}a^{9}+\frac{21\!\cdots\!43}{68\!\cdots\!44}a^{8}+\frac{28\!\cdots\!71}{86\!\cdots\!68}a^{7}-\frac{32\!\cdots\!37}{57\!\cdots\!12}a^{6}-\frac{59\!\cdots\!03}{47\!\cdots\!76}a^{5}-\frac{11\!\cdots\!61}{22\!\cdots\!64}a^{4}-\frac{25\!\cdots\!29}{11\!\cdots\!44}a^{3}+\frac{46\!\cdots\!77}{11\!\cdots\!44}a^{2}-\frac{24\!\cdots\!07}{59\!\cdots\!22}a+\frac{21\!\cdots\!63}{99\!\cdots\!87}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{54}$, which has order $54$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $17$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{29581482564430757058359808512089704296639334875}{134118463540426091217878923837269149390352871878523392} a^{35} - \frac{3952135878963214338096984450529058316200912029}{3725512876122946978274414551035254149732024218847872} a^{34} - \frac{36396457592729010143021748754484850899699815225}{67059231770213045608939461918634574695176435939261696} a^{33} + \frac{569601572793372642062170212213931931481093063287}{44706154513475363739292974612423049796784290626174464} a^{32} - \frac{212756121313231655222752695302200208078621516629}{11176538628368840934823243653105762449196072656543616} a^{31} - \frac{3187046212816395251999031884790414581269991236435}{44706154513475363739292974612423049796784290626174464} a^{30} + \frac{527941063506439892261486094465166838350314886019}{1862756438061473489137207275517627074866012109423936} a^{29} - \frac{1906745177280507654558517619435925483456620328629}{44706154513475363739292974612423049796784290626174464} a^{28} - \frac{33698923098721802618125254557836847882247391690451}{22353077256737681869646487306211524898392145313087232} a^{27} + \frac{74305608251779793182491881469945262240763465538653}{33529615885106522804469730959317287347588217969630848} a^{26} + \frac{162844536447947719694356440389875357787031422602291}{44706154513475363739292974612423049796784290626174464} a^{25} - \frac{1654959174007033462806910700385848426612593769999387}{134118463540426091217878923837269149390352871878523392} a^{24} + \frac{66163284068869853079521080438238422066161825451463}{44706154513475363739292974612423049796784290626174464} a^{23} + \frac{47140623184922574965068048821004587476612085044291}{1655783500499087545899739800460112955436455208376832} a^{22} - \frac{400195951069709608755893385821908184139435324697}{62178239935292578218766306832299095683983714361856} a^{21} - \frac{30153624626891118092015099149191108814053345057125}{551927833499695848633246600153370985145485069458944} a^{20} - \frac{2386155917798928382269893577282344293152424617764063}{22353077256737681869646487306211524898392145313087232} a^{19} + \frac{3311651510165834005151690848301683228683517924059409}{11176538628368840934823243653105762449196072656543616} a^{18} + \frac{61960928697382732932361452997093363111209372102735599}{134118463540426091217878923837269149390352871878523392} a^{17} - \frac{23409442657035451111878498972654491439405049047843101}{22353077256737681869646487306211524898392145313087232} a^{16} - \frac{114714359298678706961562469366553335603675233059674445}{134118463540426091217878923837269149390352871878523392} a^{15} + \frac{8150157886654211462101871189249957126744957589175837}{5588269314184420467411621826552881224598036328271808} a^{14} + \frac{84145321011987480692585645181994862346787955294743405}{44706154513475363739292974612423049796784290626174464} a^{13} + \frac{2499682125013738072531259457202055766801591514220197}{7451025752245893956548829102070508299464048437695744} a^{12} - \frac{11369110957154672256056132605001427382741941382547099}{1862756438061473489137207275517627074866012109423936} a^{11} - \frac{1951224318088463128661901755074070809484933925387167}{14902051504491787913097658204141016598928096875391488} a^{10} + \frac{85504640230635851353770143192833773865725790182498985}{7451025752245893956548829102070508299464048437695744} a^{9} - \frac{1405856190448522896410562322406107318059966656364379}{155229703171789457428100606293135589572167675785328} a^{8} - \frac{2088964840706491320246235192832657803991749110390029}{413945875124771886474934950115028238859113802094208} a^{7} + \frac{2597579436936975516788273016263046826249063886108305}{155229703171789457428100606293135589572167675785328} a^{6} - \frac{21132861004159070353260712319730125112547184713144}{3233952149412280363085429297773658116086826578861} a^{5} - \frac{234689804910703371433127356590387717315658807100401}{25871617195298242904683434382189264928694612630888} a^{4} + \frac{42001502571581359406261950173242979149178821353169}{4311936199216373817447239063698210821449102105148} a^{3} - \frac{1264419467007497602864552496760168101738661729220}{1077984049804093454361809765924552705362275526287} a^{2} - \frac{5636046870148993830237273746851509342055444244378}{1077984049804093454361809765924552705362275526287} a + \frac{3938578321748294220821173427899487909539206936446}{1077984049804093454361809765924552705362275526287} \)  (order $18$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{44\!\cdots\!69}{24\!\cdots\!84}a^{35}-\frac{74\!\cdots\!41}{62\!\cdots\!96}a^{34}+\frac{14\!\cdots\!15}{41\!\cdots\!64}a^{33}+\frac{41\!\cdots\!03}{27\!\cdots\!76}a^{32}-\frac{52\!\cdots\!23}{20\!\cdots\!32}a^{31}-\frac{64\!\cdots\!97}{82\!\cdots\!28}a^{30}+\frac{70\!\cdots\!45}{20\!\cdots\!32}a^{29}-\frac{77\!\cdots\!59}{82\!\cdots\!28}a^{28}-\frac{78\!\cdots\!63}{41\!\cdots\!64}a^{27}+\frac{18\!\cdots\!93}{62\!\cdots\!96}a^{26}+\frac{12\!\cdots\!47}{24\!\cdots\!84}a^{25}-\frac{14\!\cdots\!07}{91\!\cdots\!92}a^{24}+\frac{77\!\cdots\!21}{82\!\cdots\!28}a^{23}+\frac{34\!\cdots\!71}{82\!\cdots\!28}a^{22}-\frac{11\!\cdots\!49}{82\!\cdots\!28}a^{21}-\frac{81\!\cdots\!63}{82\!\cdots\!28}a^{20}-\frac{53\!\cdots\!55}{41\!\cdots\!64}a^{19}+\frac{11\!\cdots\!31}{25\!\cdots\!04}a^{18}+\frac{17\!\cdots\!09}{24\!\cdots\!84}a^{17}-\frac{18\!\cdots\!09}{12\!\cdots\!92}a^{16}-\frac{12\!\cdots\!29}{82\!\cdots\!28}a^{15}+\frac{41\!\cdots\!19}{20\!\cdots\!32}a^{14}+\frac{77\!\cdots\!61}{27\!\cdots\!76}a^{13}+\frac{36\!\cdots\!09}{13\!\cdots\!88}a^{12}-\frac{15\!\cdots\!13}{19\!\cdots\!04}a^{11}-\frac{18\!\cdots\!73}{27\!\cdots\!76}a^{10}+\frac{75\!\cdots\!25}{45\!\cdots\!96}a^{9}-\frac{34\!\cdots\!13}{28\!\cdots\!56}a^{8}-\frac{35\!\cdots\!63}{28\!\cdots\!56}a^{7}+\frac{22\!\cdots\!29}{95\!\cdots\!52}a^{6}-\frac{56\!\cdots\!39}{95\!\cdots\!52}a^{5}-\frac{21\!\cdots\!53}{15\!\cdots\!92}a^{4}+\frac{45\!\cdots\!85}{39\!\cdots\!48}a^{3}+\frac{63\!\cdots\!91}{66\!\cdots\!58}a^{2}-\frac{73\!\cdots\!03}{99\!\cdots\!87}a+\frac{13\!\cdots\!10}{33\!\cdots\!29}$, $\frac{14\!\cdots\!11}{12\!\cdots\!92}a^{35}-\frac{26\!\cdots\!55}{62\!\cdots\!96}a^{34}-\frac{39\!\cdots\!85}{62\!\cdots\!96}a^{33}+\frac{21\!\cdots\!15}{41\!\cdots\!64}a^{32}-\frac{84\!\cdots\!27}{20\!\cdots\!32}a^{31}-\frac{15\!\cdots\!27}{45\!\cdots\!96}a^{30}+\frac{20\!\cdots\!33}{20\!\cdots\!32}a^{29}+\frac{19\!\cdots\!43}{41\!\cdots\!64}a^{28}-\frac{73\!\cdots\!23}{12\!\cdots\!52}a^{27}+\frac{36\!\cdots\!01}{77\!\cdots\!12}a^{26}+\frac{19\!\cdots\!85}{12\!\cdots\!92}a^{25}-\frac{42\!\cdots\!33}{12\!\cdots\!92}a^{24}-\frac{38\!\cdots\!55}{45\!\cdots\!96}a^{23}+\frac{10\!\cdots\!81}{13\!\cdots\!88}a^{22}+\frac{22\!\cdots\!07}{41\!\cdots\!64}a^{21}-\frac{33\!\cdots\!67}{41\!\cdots\!64}a^{20}-\frac{32\!\cdots\!75}{51\!\cdots\!08}a^{19}+\frac{21\!\cdots\!13}{51\!\cdots\!08}a^{18}+\frac{23\!\cdots\!39}{12\!\cdots\!92}a^{17}-\frac{21\!\cdots\!71}{15\!\cdots\!24}a^{16}-\frac{28\!\cdots\!49}{12\!\cdots\!92}a^{15}+\frac{10\!\cdots\!29}{20\!\cdots\!32}a^{14}+\frac{10\!\cdots\!33}{41\!\cdots\!64}a^{13}+\frac{34\!\cdots\!71}{64\!\cdots\!76}a^{12}-\frac{44\!\cdots\!71}{34\!\cdots\!72}a^{11}-\frac{18\!\cdots\!91}{13\!\cdots\!88}a^{10}+\frac{32\!\cdots\!19}{11\!\cdots\!24}a^{9}-\frac{29\!\cdots\!37}{11\!\cdots\!24}a^{8}-\frac{15\!\cdots\!87}{11\!\cdots\!24}a^{7}+\frac{20\!\cdots\!41}{57\!\cdots\!12}a^{6}-\frac{62\!\cdots\!77}{47\!\cdots\!76}a^{5}-\frac{90\!\cdots\!33}{47\!\cdots\!76}a^{4}+\frac{51\!\cdots\!33}{23\!\cdots\!88}a^{3}-\frac{39\!\cdots\!81}{19\!\cdots\!74}a^{2}-\frac{19\!\cdots\!99}{19\!\cdots\!74}a+\frac{18\!\cdots\!91}{33\!\cdots\!29}$, $\frac{14\!\cdots\!91}{53\!\cdots\!68}a^{35}-\frac{12\!\cdots\!41}{17\!\cdots\!56}a^{34}-\frac{45\!\cdots\!51}{17\!\cdots\!56}a^{33}+\frac{14\!\cdots\!73}{14\!\cdots\!88}a^{32}+\frac{13\!\cdots\!13}{29\!\cdots\!76}a^{31}-\frac{48\!\cdots\!03}{59\!\cdots\!52}a^{30}+\frac{22\!\cdots\!41}{17\!\cdots\!56}a^{29}+\frac{14\!\cdots\!83}{44\!\cdots\!64}a^{28}-\frac{37\!\cdots\!11}{37\!\cdots\!72}a^{27}-\frac{58\!\cdots\!29}{13\!\cdots\!92}a^{26}+\frac{69\!\cdots\!55}{17\!\cdots\!56}a^{25}-\frac{60\!\cdots\!03}{22\!\cdots\!32}a^{24}-\frac{15\!\cdots\!55}{17\!\cdots\!56}a^{23}+\frac{19\!\cdots\!85}{22\!\cdots\!32}a^{22}+\frac{19\!\cdots\!37}{59\!\cdots\!52}a^{21}+\frac{32\!\cdots\!11}{22\!\cdots\!32}a^{20}-\frac{17\!\cdots\!21}{11\!\cdots\!16}a^{19}-\frac{83\!\cdots\!35}{74\!\cdots\!44}a^{18}+\frac{23\!\cdots\!71}{53\!\cdots\!68}a^{17}+\frac{19\!\cdots\!51}{59\!\cdots\!52}a^{16}-\frac{43\!\cdots\!75}{89\!\cdots\!28}a^{15}-\frac{47\!\cdots\!45}{55\!\cdots\!08}a^{14}+\frac{36\!\cdots\!25}{17\!\cdots\!56}a^{13}+\frac{13\!\cdots\!51}{66\!\cdots\!28}a^{12}-\frac{26\!\cdots\!89}{59\!\cdots\!52}a^{11}-\frac{40\!\cdots\!73}{14\!\cdots\!88}a^{10}+\frac{47\!\cdots\!39}{14\!\cdots\!16}a^{9}+\frac{12\!\cdots\!33}{12\!\cdots\!24}a^{8}-\frac{87\!\cdots\!17}{21\!\cdots\!74}a^{7}+\frac{65\!\cdots\!39}{51\!\cdots\!76}a^{6}+\frac{22\!\cdots\!23}{10\!\cdots\!52}a^{5}-\frac{54\!\cdots\!19}{25\!\cdots\!88}a^{4}+\frac{15\!\cdots\!15}{95\!\cdots\!44}a^{3}+\frac{44\!\cdots\!89}{43\!\cdots\!48}a^{2}-\frac{67\!\cdots\!55}{21\!\cdots\!74}a-\frac{26\!\cdots\!16}{11\!\cdots\!43}$, $\frac{78\!\cdots\!23}{49\!\cdots\!68}a^{35}-\frac{27\!\cdots\!21}{49\!\cdots\!68}a^{34}-\frac{53\!\cdots\!95}{49\!\cdots\!68}a^{33}+\frac{66\!\cdots\!15}{91\!\cdots\!92}a^{32}-\frac{28\!\cdots\!25}{82\!\cdots\!28}a^{31}-\frac{27\!\cdots\!07}{55\!\cdots\!52}a^{30}+\frac{67\!\cdots\!37}{55\!\cdots\!52}a^{29}+\frac{11\!\cdots\!31}{10\!\cdots\!88}a^{28}-\frac{20\!\cdots\!13}{25\!\cdots\!04}a^{27}+\frac{50\!\cdots\!43}{12\!\cdots\!92}a^{26}+\frac{11\!\cdots\!73}{49\!\cdots\!68}a^{25}-\frac{10\!\cdots\!99}{24\!\cdots\!84}a^{24}-\frac{15\!\cdots\!33}{55\!\cdots\!52}a^{23}+\frac{84\!\cdots\!81}{82\!\cdots\!28}a^{22}+\frac{19\!\cdots\!67}{16\!\cdots\!56}a^{21}-\frac{25\!\cdots\!43}{27\!\cdots\!76}a^{20}-\frac{66\!\cdots\!89}{68\!\cdots\!44}a^{19}+\frac{63\!\cdots\!89}{20\!\cdots\!32}a^{18}+\frac{15\!\cdots\!67}{49\!\cdots\!68}a^{17}-\frac{48\!\cdots\!99}{49\!\cdots\!68}a^{16}-\frac{50\!\cdots\!61}{12\!\cdots\!92}a^{15}-\frac{14\!\cdots\!95}{13\!\cdots\!88}a^{14}+\frac{64\!\cdots\!69}{16\!\cdots\!56}a^{13}+\frac{16\!\cdots\!47}{16\!\cdots\!56}a^{12}-\frac{83\!\cdots\!63}{55\!\cdots\!52}a^{11}-\frac{25\!\cdots\!31}{27\!\cdots\!76}a^{10}+\frac{43\!\cdots\!95}{11\!\cdots\!24}a^{9}-\frac{25\!\cdots\!39}{11\!\cdots\!24}a^{8}-\frac{31\!\cdots\!39}{11\!\cdots\!24}a^{7}+\frac{56\!\cdots\!93}{14\!\cdots\!28}a^{6}-\frac{76\!\cdots\!83}{15\!\cdots\!92}a^{5}-\frac{11\!\cdots\!33}{47\!\cdots\!76}a^{4}+\frac{48\!\cdots\!51}{23\!\cdots\!88}a^{3}+\frac{21\!\cdots\!87}{99\!\cdots\!87}a^{2}-\frac{99\!\cdots\!49}{99\!\cdots\!87}a+\frac{95\!\cdots\!70}{33\!\cdots\!29}$, $\frac{27\!\cdots\!07}{37\!\cdots\!76}a^{35}-\frac{48\!\cdots\!23}{24\!\cdots\!84}a^{34}-\frac{17\!\cdots\!15}{24\!\cdots\!84}a^{33}+\frac{22\!\cdots\!75}{82\!\cdots\!28}a^{32}+\frac{14\!\cdots\!55}{12\!\cdots\!92}a^{31}-\frac{23\!\cdots\!95}{10\!\cdots\!16}a^{30}+\frac{87\!\cdots\!03}{24\!\cdots\!84}a^{29}+\frac{22\!\cdots\!65}{24\!\cdots\!84}a^{28}-\frac{11\!\cdots\!29}{41\!\cdots\!64}a^{27}-\frac{28\!\cdots\!41}{23\!\cdots\!36}a^{26}+\frac{45\!\cdots\!99}{41\!\cdots\!64}a^{25}-\frac{18\!\cdots\!67}{24\!\cdots\!84}a^{24}-\frac{14\!\cdots\!39}{62\!\cdots\!96}a^{23}+\frac{61\!\cdots\!35}{24\!\cdots\!84}a^{22}+\frac{18\!\cdots\!49}{20\!\cdots\!32}a^{21}+\frac{87\!\cdots\!65}{24\!\cdots\!84}a^{20}-\frac{57\!\cdots\!79}{12\!\cdots\!92}a^{19}-\frac{80\!\cdots\!35}{25\!\cdots\!04}a^{18}+\frac{48\!\cdots\!83}{37\!\cdots\!76}a^{17}+\frac{25\!\cdots\!93}{24\!\cdots\!84}a^{16}-\frac{36\!\cdots\!63}{24\!\cdots\!84}a^{15}-\frac{17\!\cdots\!05}{62\!\cdots\!96}a^{14}-\frac{40\!\cdots\!27}{41\!\cdots\!64}a^{13}+\frac{17\!\cdots\!01}{27\!\cdots\!76}a^{12}-\frac{47\!\cdots\!71}{82\!\cdots\!28}a^{11}-\frac{21\!\cdots\!91}{27\!\cdots\!76}a^{10}+\frac{11\!\cdots\!61}{13\!\cdots\!88}a^{9}+\frac{77\!\cdots\!07}{34\!\cdots\!72}a^{8}-\frac{31\!\cdots\!13}{28\!\cdots\!56}a^{7}+\frac{23\!\cdots\!27}{89\!\cdots\!83}a^{6}+\frac{16\!\cdots\!15}{28\!\cdots\!56}a^{5}-\frac{22\!\cdots\!57}{47\!\cdots\!76}a^{4}+\frac{17\!\cdots\!91}{79\!\cdots\!96}a^{3}+\frac{30\!\cdots\!11}{11\!\cdots\!44}a^{2}-\frac{70\!\cdots\!07}{19\!\cdots\!74}a-\frac{12\!\cdots\!74}{99\!\cdots\!87}$, $\frac{11\!\cdots\!41}{76\!\cdots\!76}a^{35}-\frac{24\!\cdots\!19}{76\!\cdots\!76}a^{34}-\frac{13\!\cdots\!81}{76\!\cdots\!76}a^{33}+\frac{63\!\cdots\!41}{12\!\cdots\!96}a^{32}+\frac{76\!\cdots\!43}{12\!\cdots\!96}a^{31}-\frac{12\!\cdots\!51}{25\!\cdots\!92}a^{30}+\frac{14\!\cdots\!49}{31\!\cdots\!32}a^{29}+\frac{30\!\cdots\!15}{12\!\cdots\!96}a^{28}-\frac{11\!\cdots\!41}{23\!\cdots\!24}a^{27}-\frac{37\!\cdots\!01}{59\!\cdots\!92}a^{26}+\frac{17\!\cdots\!67}{76\!\cdots\!76}a^{25}-\frac{66\!\cdots\!35}{38\!\cdots\!88}a^{24}-\frac{16\!\cdots\!53}{25\!\cdots\!92}a^{23}+\frac{35\!\cdots\!07}{14\!\cdots\!44}a^{22}+\frac{59\!\cdots\!05}{25\!\cdots\!92}a^{21}+\frac{24\!\cdots\!57}{14\!\cdots\!44}a^{20}-\frac{47\!\cdots\!39}{49\!\cdots\!66}a^{19}-\frac{85\!\cdots\!19}{70\!\cdots\!72}a^{18}+\frac{19\!\cdots\!77}{76\!\cdots\!76}a^{17}+\frac{28\!\cdots\!35}{76\!\cdots\!76}a^{16}-\frac{22\!\cdots\!45}{95\!\cdots\!72}a^{15}-\frac{24\!\cdots\!29}{31\!\cdots\!24}a^{14}-\frac{58\!\cdots\!49}{25\!\cdots\!92}a^{13}+\frac{34\!\cdots\!77}{25\!\cdots\!92}a^{12}+\frac{13\!\cdots\!53}{28\!\cdots\!88}a^{11}-\frac{27\!\cdots\!91}{14\!\cdots\!44}a^{10}+\frac{22\!\cdots\!49}{23\!\cdots\!24}a^{9}+\frac{14\!\cdots\!73}{70\!\cdots\!72}a^{8}-\frac{45\!\cdots\!91}{17\!\cdots\!68}a^{7}-\frac{22\!\cdots\!51}{17\!\cdots\!68}a^{6}+\frac{71\!\cdots\!99}{29\!\cdots\!28}a^{5}-\frac{33\!\cdots\!83}{73\!\cdots\!32}a^{4}-\frac{43\!\cdots\!99}{36\!\cdots\!16}a^{3}+\frac{70\!\cdots\!87}{68\!\cdots\!54}a^{2}+\frac{52\!\cdots\!22}{10\!\cdots\!31}a-\frac{18\!\cdots\!43}{34\!\cdots\!77}$, $\frac{79\!\cdots\!15}{49\!\cdots\!68}a^{35}-\frac{88\!\cdots\!17}{49\!\cdots\!68}a^{34}-\frac{14\!\cdots\!95}{49\!\cdots\!68}a^{33}+\frac{25\!\cdots\!27}{82\!\cdots\!28}a^{32}+\frac{58\!\cdots\!19}{27\!\cdots\!76}a^{31}-\frac{94\!\cdots\!05}{16\!\cdots\!56}a^{30}-\frac{88\!\cdots\!41}{16\!\cdots\!56}a^{29}+\frac{41\!\cdots\!55}{82\!\cdots\!28}a^{28}-\frac{13\!\cdots\!09}{41\!\cdots\!64}a^{27}-\frac{28\!\cdots\!81}{12\!\cdots\!92}a^{26}+\frac{15\!\cdots\!33}{49\!\cdots\!68}a^{25}+\frac{12\!\cdots\!35}{24\!\cdots\!84}a^{24}-\frac{24\!\cdots\!75}{16\!\cdots\!56}a^{23}-\frac{29\!\cdots\!73}{82\!\cdots\!28}a^{22}+\frac{81\!\cdots\!19}{18\!\cdots\!84}a^{21}+\frac{37\!\cdots\!65}{82\!\cdots\!28}a^{20}-\frac{52\!\cdots\!81}{41\!\cdots\!64}a^{19}-\frac{70\!\cdots\!79}{20\!\cdots\!32}a^{18}+\frac{17\!\cdots\!39}{49\!\cdots\!68}a^{17}+\frac{53\!\cdots\!33}{49\!\cdots\!68}a^{16}-\frac{49\!\cdots\!07}{12\!\cdots\!92}a^{15}-\frac{15\!\cdots\!03}{86\!\cdots\!68}a^{14}-\frac{13\!\cdots\!27}{16\!\cdots\!56}a^{13}+\frac{42\!\cdots\!15}{16\!\cdots\!56}a^{12}+\frac{18\!\cdots\!45}{55\!\cdots\!52}a^{11}-\frac{14\!\cdots\!83}{27\!\cdots\!76}a^{10}-\frac{25\!\cdots\!07}{13\!\cdots\!88}a^{9}+\frac{51\!\cdots\!15}{57\!\cdots\!12}a^{8}-\frac{61\!\cdots\!09}{11\!\cdots\!24}a^{7}-\frac{90\!\cdots\!39}{14\!\cdots\!28}a^{6}+\frac{18\!\cdots\!63}{26\!\cdots\!32}a^{5}+\frac{10\!\cdots\!71}{47\!\cdots\!76}a^{4}-\frac{29\!\cdots\!99}{59\!\cdots\!22}a^{3}+\frac{26\!\cdots\!51}{99\!\cdots\!87}a^{2}+\frac{11\!\cdots\!88}{99\!\cdots\!87}a-\frac{54\!\cdots\!99}{99\!\cdots\!87}$, $\frac{85\!\cdots\!41}{14\!\cdots\!04}a^{35}-\frac{24\!\cdots\!95}{16\!\cdots\!56}a^{34}-\frac{27\!\cdots\!63}{49\!\cdots\!68}a^{33}+\frac{16\!\cdots\!95}{82\!\cdots\!28}a^{32}+\frac{24\!\cdots\!29}{24\!\cdots\!84}a^{31}-\frac{28\!\cdots\!65}{16\!\cdots\!56}a^{30}+\frac{12\!\cdots\!01}{49\!\cdots\!68}a^{29}+\frac{17\!\cdots\!29}{24\!\cdots\!84}a^{28}-\frac{43\!\cdots\!07}{20\!\cdots\!32}a^{27}-\frac{15\!\cdots\!87}{15\!\cdots\!72}a^{26}+\frac{39\!\cdots\!49}{49\!\cdots\!68}a^{25}-\frac{13\!\cdots\!39}{24\!\cdots\!84}a^{24}-\frac{86\!\cdots\!33}{49\!\cdots\!68}a^{23}+\frac{41\!\cdots\!75}{24\!\cdots\!84}a^{22}+\frac{37\!\cdots\!61}{55\!\cdots\!52}a^{21}+\frac{89\!\cdots\!33}{24\!\cdots\!84}a^{20}-\frac{32\!\cdots\!79}{96\!\cdots\!64}a^{19}-\frac{51\!\cdots\!97}{20\!\cdots\!32}a^{18}+\frac{13\!\cdots\!29}{14\!\cdots\!04}a^{17}+\frac{37\!\cdots\!37}{49\!\cdots\!68}a^{16}-\frac{11\!\cdots\!71}{12\!\cdots\!92}a^{15}-\frac{22\!\cdots\!41}{12\!\cdots\!92}a^{14}-\frac{27\!\cdots\!49}{23\!\cdots\!44}a^{13}+\frac{71\!\cdots\!63}{16\!\cdots\!56}a^{12}-\frac{12\!\cdots\!93}{16\!\cdots\!56}a^{11}-\frac{14\!\cdots\!67}{27\!\cdots\!76}a^{10}+\frac{44\!\cdots\!59}{68\!\cdots\!44}a^{9}+\frac{69\!\cdots\!55}{34\!\cdots\!72}a^{8}-\frac{21\!\cdots\!05}{28\!\cdots\!56}a^{7}+\frac{26\!\cdots\!05}{17\!\cdots\!66}a^{6}+\frac{67\!\cdots\!83}{14\!\cdots\!28}a^{5}-\frac{24\!\cdots\!71}{68\!\cdots\!24}a^{4}-\frac{28\!\cdots\!17}{11\!\cdots\!44}a^{3}+\frac{24\!\cdots\!63}{11\!\cdots\!44}a^{2}-\frac{13\!\cdots\!37}{19\!\cdots\!74}a-\frac{83\!\cdots\!38}{99\!\cdots\!87}$, $\frac{58\!\cdots\!07}{49\!\cdots\!68}a^{35}-\frac{12\!\cdots\!23}{49\!\cdots\!68}a^{34}-\frac{24\!\cdots\!79}{16\!\cdots\!56}a^{33}+\frac{18\!\cdots\!43}{41\!\cdots\!64}a^{32}+\frac{15\!\cdots\!79}{27\!\cdots\!76}a^{31}-\frac{78\!\cdots\!77}{18\!\cdots\!84}a^{30}+\frac{64\!\cdots\!25}{16\!\cdots\!56}a^{29}+\frac{31\!\cdots\!97}{13\!\cdots\!88}a^{28}-\frac{20\!\cdots\!43}{41\!\cdots\!64}a^{27}-\frac{71\!\cdots\!81}{12\!\cdots\!92}a^{26}+\frac{11\!\cdots\!81}{49\!\cdots\!68}a^{25}-\frac{20\!\cdots\!27}{45\!\cdots\!96}a^{24}-\frac{12\!\cdots\!79}{18\!\cdots\!84}a^{23}+\frac{23\!\cdots\!79}{45\!\cdots\!96}a^{22}+\frac{33\!\cdots\!39}{16\!\cdots\!56}a^{21}+\frac{24\!\cdots\!29}{41\!\cdots\!64}a^{20}-\frac{40\!\cdots\!61}{45\!\cdots\!96}a^{19}-\frac{18\!\cdots\!05}{20\!\cdots\!32}a^{18}+\frac{14\!\cdots\!79}{49\!\cdots\!68}a^{17}+\frac{14\!\cdots\!71}{49\!\cdots\!68}a^{16}-\frac{36\!\cdots\!39}{82\!\cdots\!28}a^{15}-\frac{25\!\cdots\!17}{41\!\cdots\!64}a^{14}+\frac{44\!\cdots\!59}{55\!\cdots\!52}a^{13}+\frac{23\!\cdots\!37}{16\!\cdots\!56}a^{12}+\frac{14\!\cdots\!55}{55\!\cdots\!52}a^{11}-\frac{36\!\cdots\!15}{13\!\cdots\!88}a^{10}+\frac{22\!\cdots\!79}{13\!\cdots\!88}a^{9}+\frac{24\!\cdots\!97}{11\!\cdots\!24}a^{8}-\frac{48\!\cdots\!23}{11\!\cdots\!24}a^{7}+\frac{70\!\cdots\!73}{95\!\cdots\!52}a^{6}+\frac{24\!\cdots\!07}{95\!\cdots\!52}a^{5}-\frac{15\!\cdots\!59}{79\!\cdots\!96}a^{4}-\frac{40\!\cdots\!33}{23\!\cdots\!88}a^{3}+\frac{26\!\cdots\!47}{19\!\cdots\!74}a^{2}-\frac{76\!\cdots\!34}{99\!\cdots\!87}a+\frac{34\!\cdots\!82}{99\!\cdots\!87}$, $\frac{11\!\cdots\!87}{49\!\cdots\!68}a^{35}-\frac{32\!\cdots\!03}{49\!\cdots\!68}a^{34}-\frac{91\!\cdots\!65}{49\!\cdots\!68}a^{33}+\frac{11\!\cdots\!91}{13\!\cdots\!88}a^{32}+\frac{54\!\cdots\!01}{10\!\cdots\!88}a^{31}-\frac{10\!\cdots\!33}{16\!\cdots\!56}a^{30}+\frac{66\!\cdots\!19}{55\!\cdots\!52}a^{29}+\frac{28\!\cdots\!21}{13\!\cdots\!88}a^{28}-\frac{34\!\cdots\!35}{41\!\cdots\!64}a^{27}-\frac{73\!\cdots\!79}{12\!\cdots\!92}a^{26}+\frac{13\!\cdots\!01}{49\!\cdots\!68}a^{25}-\frac{34\!\cdots\!87}{12\!\cdots\!92}a^{24}-\frac{26\!\cdots\!41}{55\!\cdots\!52}a^{23}+\frac{86\!\cdots\!65}{13\!\cdots\!88}a^{22}+\frac{39\!\cdots\!67}{16\!\cdots\!56}a^{21}+\frac{14\!\cdots\!67}{13\!\cdots\!88}a^{20}-\frac{61\!\cdots\!07}{45\!\cdots\!96}a^{19}-\frac{65\!\cdots\!03}{10\!\cdots\!16}a^{18}+\frac{16\!\cdots\!55}{49\!\cdots\!68}a^{17}+\frac{11\!\cdots\!47}{49\!\cdots\!68}a^{16}-\frac{70\!\cdots\!09}{24\!\cdots\!84}a^{15}-\frac{34\!\cdots\!17}{45\!\cdots\!96}a^{14}-\frac{68\!\cdots\!97}{55\!\cdots\!52}a^{13}+\frac{92\!\cdots\!03}{55\!\cdots\!52}a^{12}-\frac{21\!\cdots\!13}{55\!\cdots\!52}a^{11}-\frac{16\!\cdots\!93}{13\!\cdots\!88}a^{10}+\frac{27\!\cdots\!63}{13\!\cdots\!88}a^{9}-\frac{18\!\cdots\!39}{22\!\cdots\!48}a^{8}-\frac{78\!\cdots\!23}{57\!\cdots\!12}a^{7}+\frac{12\!\cdots\!01}{57\!\cdots\!12}a^{6}+\frac{75\!\cdots\!93}{88\!\cdots\!44}a^{5}-\frac{23\!\cdots\!45}{79\!\cdots\!96}a^{4}+\frac{55\!\cdots\!47}{79\!\cdots\!96}a^{3}+\frac{75\!\cdots\!39}{39\!\cdots\!48}a^{2}+\frac{10\!\cdots\!07}{19\!\cdots\!74}a-\frac{66\!\cdots\!76}{99\!\cdots\!87}$, $\frac{13\!\cdots\!47}{14\!\cdots\!04}a^{35}-\frac{14\!\cdots\!03}{14\!\cdots\!04}a^{34}-\frac{62\!\cdots\!31}{49\!\cdots\!68}a^{33}+\frac{26\!\cdots\!81}{12\!\cdots\!92}a^{32}+\frac{17\!\cdots\!03}{24\!\cdots\!84}a^{31}-\frac{13\!\cdots\!41}{49\!\cdots\!68}a^{30}-\frac{29\!\cdots\!11}{49\!\cdots\!68}a^{29}+\frac{24\!\cdots\!11}{12\!\cdots\!92}a^{28}-\frac{13\!\cdots\!71}{62\!\cdots\!96}a^{27}-\frac{28\!\cdots\!11}{37\!\cdots\!76}a^{26}+\frac{20\!\cdots\!09}{14\!\cdots\!04}a^{25}+\frac{25\!\cdots\!77}{20\!\cdots\!32}a^{24}-\frac{29\!\cdots\!39}{55\!\cdots\!52}a^{23}-\frac{68\!\cdots\!31}{10\!\cdots\!16}a^{22}+\frac{90\!\cdots\!83}{49\!\cdots\!68}a^{21}+\frac{53\!\cdots\!61}{31\!\cdots\!48}a^{20}-\frac{18\!\cdots\!17}{31\!\cdots\!48}a^{19}-\frac{37\!\cdots\!19}{31\!\cdots\!48}a^{18}+\frac{22\!\cdots\!87}{14\!\cdots\!04}a^{17}+\frac{56\!\cdots\!51}{14\!\cdots\!04}a^{16}-\frac{38\!\cdots\!03}{24\!\cdots\!84}a^{15}-\frac{42\!\cdots\!35}{62\!\cdots\!96}a^{14}-\frac{11\!\cdots\!71}{49\!\cdots\!68}a^{13}+\frac{57\!\cdots\!29}{55\!\cdots\!52}a^{12}+\frac{50\!\cdots\!69}{55\!\cdots\!52}a^{11}-\frac{75\!\cdots\!95}{41\!\cdots\!64}a^{10}-\frac{20\!\cdots\!27}{68\!\cdots\!44}a^{9}+\frac{20\!\cdots\!19}{68\!\cdots\!44}a^{8}-\frac{41\!\cdots\!39}{21\!\cdots\!92}a^{7}-\frac{35\!\cdots\!67}{14\!\cdots\!28}a^{6}+\frac{44\!\cdots\!57}{14\!\cdots\!28}a^{5}+\frac{23\!\cdots\!91}{17\!\cdots\!66}a^{4}-\frac{80\!\cdots\!27}{39\!\cdots\!48}a^{3}+\frac{52\!\cdots\!67}{39\!\cdots\!48}a^{2}+\frac{29\!\cdots\!87}{59\!\cdots\!22}a-\frac{78\!\cdots\!82}{99\!\cdots\!87}$, $\frac{27\!\cdots\!13}{14\!\cdots\!04}a^{35}-\frac{73\!\cdots\!33}{14\!\cdots\!04}a^{34}-\frac{89\!\cdots\!09}{49\!\cdots\!68}a^{33}+\frac{21\!\cdots\!27}{31\!\cdots\!36}a^{32}+\frac{86\!\cdots\!41}{24\!\cdots\!84}a^{31}-\frac{29\!\cdots\!31}{49\!\cdots\!68}a^{30}+\frac{42\!\cdots\!99}{49\!\cdots\!68}a^{29}+\frac{99\!\cdots\!55}{41\!\cdots\!64}a^{28}-\frac{44\!\cdots\!39}{62\!\cdots\!96}a^{27}-\frac{14\!\cdots\!77}{37\!\cdots\!76}a^{26}+\frac{42\!\cdots\!07}{14\!\cdots\!04}a^{25}-\frac{94\!\cdots\!57}{62\!\cdots\!96}a^{24}-\frac{33\!\cdots\!77}{49\!\cdots\!68}a^{23}+\frac{89\!\cdots\!69}{15\!\cdots\!24}a^{22}+\frac{12\!\cdots\!17}{49\!\cdots\!68}a^{21}+\frac{12\!\cdots\!49}{15\!\cdots\!24}a^{20}-\frac{43\!\cdots\!35}{34\!\cdots\!72}a^{19}-\frac{25\!\cdots\!89}{31\!\cdots\!48}a^{18}+\frac{53\!\cdots\!69}{14\!\cdots\!04}a^{17}+\frac{45\!\cdots\!77}{14\!\cdots\!04}a^{16}-\frac{37\!\cdots\!51}{82\!\cdots\!28}a^{15}-\frac{17\!\cdots\!13}{20\!\cdots\!32}a^{14}+\frac{53\!\cdots\!91}{49\!\cdots\!68}a^{13}+\frac{34\!\cdots\!01}{18\!\cdots\!84}a^{12}-\frac{18\!\cdots\!63}{16\!\cdots\!56}a^{11}-\frac{99\!\cdots\!13}{41\!\cdots\!64}a^{10}+\frac{12\!\cdots\!35}{68\!\cdots\!44}a^{9}+\frac{10\!\cdots\!15}{68\!\cdots\!44}a^{8}-\frac{10\!\cdots\!19}{34\!\cdots\!72}a^{7}-\frac{73\!\cdots\!07}{95\!\cdots\!52}a^{6}+\frac{30\!\cdots\!73}{95\!\cdots\!52}a^{5}-\frac{24\!\cdots\!23}{35\!\cdots\!32}a^{4}-\frac{10\!\cdots\!63}{88\!\cdots\!44}a^{3}+\frac{76\!\cdots\!77}{59\!\cdots\!22}a^{2}+\frac{24\!\cdots\!41}{59\!\cdots\!22}a-\frac{94\!\cdots\!61}{99\!\cdots\!87}$, $\frac{31\!\cdots\!03}{12\!\cdots\!92}a^{35}-\frac{11\!\cdots\!37}{18\!\cdots\!88}a^{34}-\frac{16\!\cdots\!13}{62\!\cdots\!96}a^{33}+\frac{11\!\cdots\!71}{12\!\cdots\!92}a^{32}+\frac{21\!\cdots\!27}{34\!\cdots\!72}a^{31}-\frac{99\!\cdots\!19}{12\!\cdots\!92}a^{30}+\frac{22\!\cdots\!85}{20\!\cdots\!32}a^{29}+\frac{18\!\cdots\!21}{53\!\cdots\!24}a^{28}-\frac{60\!\cdots\!73}{62\!\cdots\!96}a^{27}-\frac{38\!\cdots\!55}{62\!\cdots\!96}a^{26}+\frac{14\!\cdots\!35}{37\!\cdots\!76}a^{25}-\frac{25\!\cdots\!57}{12\!\cdots\!92}a^{24}-\frac{11\!\cdots\!33}{12\!\cdots\!92}a^{23}+\frac{10\!\cdots\!23}{12\!\cdots\!92}a^{22}+\frac{41\!\cdots\!81}{12\!\cdots\!92}a^{21}+\frac{65\!\cdots\!11}{45\!\cdots\!96}a^{20}-\frac{62\!\cdots\!95}{38\!\cdots\!56}a^{19}-\frac{81\!\cdots\!97}{62\!\cdots\!96}a^{18}+\frac{57\!\cdots\!99}{12\!\cdots\!92}a^{17}+\frac{18\!\cdots\!91}{46\!\cdots\!72}a^{16}-\frac{78\!\cdots\!85}{13\!\cdots\!88}a^{15}-\frac{14\!\cdots\!39}{15\!\cdots\!24}a^{14}+\frac{10\!\cdots\!93}{12\!\cdots\!92}a^{13}+\frac{23\!\cdots\!49}{10\!\cdots\!16}a^{12}-\frac{12\!\cdots\!09}{10\!\cdots\!16}a^{11}-\frac{13\!\cdots\!63}{41\!\cdots\!64}a^{10}+\frac{21\!\cdots\!59}{68\!\cdots\!44}a^{9}+\frac{40\!\cdots\!33}{22\!\cdots\!48}a^{8}-\frac{17\!\cdots\!81}{34\!\cdots\!72}a^{7}+\frac{67\!\cdots\!73}{63\!\cdots\!68}a^{6}+\frac{10\!\cdots\!45}{35\!\cdots\!32}a^{5}-\frac{16\!\cdots\!05}{71\!\cdots\!64}a^{4}-\frac{65\!\cdots\!39}{23\!\cdots\!88}a^{3}+\frac{95\!\cdots\!59}{59\!\cdots\!22}a^{2}-\frac{31\!\cdots\!03}{59\!\cdots\!22}a-\frac{14\!\cdots\!17}{99\!\cdots\!87}$, $\frac{51\!\cdots\!31}{74\!\cdots\!52}a^{35}-\frac{10\!\cdots\!69}{74\!\cdots\!52}a^{34}-\frac{63\!\cdots\!17}{82\!\cdots\!28}a^{33}+\frac{68\!\cdots\!39}{31\!\cdots\!48}a^{32}+\frac{15\!\cdots\!37}{62\!\cdots\!96}a^{31}-\frac{51\!\cdots\!09}{24\!\cdots\!84}a^{30}+\frac{52\!\cdots\!59}{24\!\cdots\!84}a^{29}+\frac{64\!\cdots\!93}{62\!\cdots\!96}a^{28}-\frac{27\!\cdots\!89}{12\!\cdots\!92}a^{27}-\frac{24\!\cdots\!15}{93\!\cdots\!44}a^{26}+\frac{73\!\cdots\!17}{74\!\cdots\!52}a^{25}-\frac{18\!\cdots\!13}{12\!\cdots\!92}a^{24}-\frac{75\!\cdots\!45}{27\!\cdots\!76}a^{23}+\frac{51\!\cdots\!65}{41\!\cdots\!64}a^{22}+\frac{24\!\cdots\!69}{24\!\cdots\!84}a^{21}+\frac{91\!\cdots\!77}{12\!\cdots\!92}a^{20}-\frac{51\!\cdots\!21}{12\!\cdots\!92}a^{19}-\frac{31\!\cdots\!97}{62\!\cdots\!96}a^{18}+\frac{80\!\cdots\!39}{74\!\cdots\!52}a^{17}+\frac{11\!\cdots\!21}{74\!\cdots\!52}a^{16}-\frac{13\!\cdots\!09}{12\!\cdots\!92}a^{15}-\frac{38\!\cdots\!51}{12\!\cdots\!92}a^{14}-\frac{21\!\cdots\!87}{24\!\cdots\!84}a^{13}+\frac{48\!\cdots\!21}{82\!\cdots\!28}a^{12}+\frac{45\!\cdots\!29}{27\!\cdots\!76}a^{11}-\frac{17\!\cdots\!55}{20\!\cdots\!32}a^{10}+\frac{69\!\cdots\!91}{13\!\cdots\!88}a^{9}+\frac{57\!\cdots\!13}{68\!\cdots\!44}a^{8}-\frac{19\!\cdots\!11}{17\!\cdots\!36}a^{7}-\frac{21\!\cdots\!01}{57\!\cdots\!12}a^{6}+\frac{15\!\cdots\!05}{14\!\cdots\!28}a^{5}-\frac{48\!\cdots\!53}{14\!\cdots\!28}a^{4}-\frac{54\!\cdots\!47}{11\!\cdots\!44}a^{3}+\frac{47\!\cdots\!01}{99\!\cdots\!87}a^{2}+\frac{27\!\cdots\!59}{29\!\cdots\!61}a-\frac{25\!\cdots\!25}{99\!\cdots\!87}$, $\frac{36\!\cdots\!03}{14\!\cdots\!04}a^{35}-\frac{78\!\cdots\!89}{14\!\cdots\!04}a^{34}-\frac{13\!\cdots\!73}{49\!\cdots\!68}a^{33}+\frac{19\!\cdots\!09}{24\!\cdots\!84}a^{32}+\frac{19\!\cdots\!09}{24\!\cdots\!84}a^{31}-\frac{36\!\cdots\!97}{49\!\cdots\!68}a^{30}+\frac{41\!\cdots\!87}{49\!\cdots\!68}a^{29}+\frac{32\!\cdots\!63}{91\!\cdots\!92}a^{28}-\frac{10\!\cdots\!37}{12\!\cdots\!92}a^{27}-\frac{30\!\cdots\!83}{37\!\cdots\!76}a^{26}+\frac{51\!\cdots\!41}{14\!\cdots\!04}a^{25}-\frac{25\!\cdots\!73}{24\!\cdots\!84}a^{24}-\frac{45\!\cdots\!47}{49\!\cdots\!68}a^{23}+\frac{13\!\cdots\!29}{24\!\cdots\!84}a^{22}+\frac{16\!\cdots\!87}{49\!\cdots\!68}a^{21}+\frac{59\!\cdots\!95}{24\!\cdots\!84}a^{20}-\frac{58\!\cdots\!65}{41\!\cdots\!64}a^{19}-\frac{50\!\cdots\!29}{31\!\cdots\!48}a^{18}+\frac{55\!\cdots\!15}{14\!\cdots\!04}a^{17}+\frac{70\!\cdots\!53}{14\!\cdots\!04}a^{16}-\frac{37\!\cdots\!59}{10\!\cdots\!16}a^{15}-\frac{65\!\cdots\!91}{68\!\cdots\!44}a^{14}-\frac{11\!\cdots\!47}{49\!\cdots\!68}a^{13}+\frac{31\!\cdots\!57}{16\!\cdots\!56}a^{12}+\frac{48\!\cdots\!53}{16\!\cdots\!56}a^{11}-\frac{22\!\cdots\!77}{82\!\cdots\!28}a^{10}+\frac{12\!\cdots\!77}{56\!\cdots\!16}a^{9}+\frac{16\!\cdots\!03}{68\!\cdots\!44}a^{8}-\frac{13\!\cdots\!51}{34\!\cdots\!72}a^{7}-\frac{19\!\cdots\!93}{48\!\cdots\!32}a^{6}+\frac{53\!\cdots\!47}{15\!\cdots\!92}a^{5}-\frac{13\!\cdots\!19}{89\!\cdots\!83}a^{4}-\frac{26\!\cdots\!13}{23\!\cdots\!88}a^{3}+\frac{96\!\cdots\!05}{59\!\cdots\!22}a^{2}+\frac{48\!\cdots\!34}{29\!\cdots\!61}a-\frac{21\!\cdots\!31}{33\!\cdots\!29}$, $\frac{35\!\cdots\!53}{14\!\cdots\!04}a^{35}-\frac{86\!\cdots\!45}{14\!\cdots\!04}a^{34}-\frac{40\!\cdots\!99}{16\!\cdots\!56}a^{33}+\frac{10\!\cdots\!19}{12\!\cdots\!92}a^{32}+\frac{14\!\cdots\!65}{24\!\cdots\!84}a^{31}-\frac{37\!\cdots\!95}{49\!\cdots\!68}a^{30}+\frac{49\!\cdots\!63}{49\!\cdots\!68}a^{29}+\frac{40\!\cdots\!53}{12\!\cdots\!92}a^{28}-\frac{54\!\cdots\!57}{62\!\cdots\!96}a^{27}-\frac{23\!\cdots\!13}{37\!\cdots\!76}a^{26}+\frac{54\!\cdots\!39}{14\!\cdots\!04}a^{25}-\frac{10\!\cdots\!43}{62\!\cdots\!96}a^{24}-\frac{14\!\cdots\!75}{16\!\cdots\!56}a^{23}+\frac{43\!\cdots\!49}{64\!\cdots\!76}a^{22}+\frac{16\!\cdots\!29}{49\!\cdots\!68}a^{21}+\frac{23\!\cdots\!17}{15\!\cdots\!24}a^{20}-\frac{47\!\cdots\!15}{31\!\cdots\!48}a^{19}-\frac{19\!\cdots\!33}{15\!\cdots\!24}a^{18}+\frac{63\!\cdots\!77}{14\!\cdots\!04}a^{17}+\frac{60\!\cdots\!81}{14\!\cdots\!04}a^{16}-\frac{13\!\cdots\!97}{24\!\cdots\!84}a^{15}-\frac{62\!\cdots\!41}{62\!\cdots\!96}a^{14}+\frac{46\!\cdots\!11}{49\!\cdots\!68}a^{13}+\frac{37\!\cdots\!93}{16\!\cdots\!56}a^{12}-\frac{38\!\cdots\!37}{55\!\cdots\!52}a^{11}-\frac{12\!\cdots\!89}{41\!\cdots\!64}a^{10}+\frac{15\!\cdots\!65}{68\!\cdots\!44}a^{9}+\frac{16\!\cdots\!09}{68\!\cdots\!44}a^{8}-\frac{14\!\cdots\!07}{34\!\cdots\!72}a^{7}-\frac{33\!\cdots\!07}{57\!\cdots\!12}a^{6}+\frac{12\!\cdots\!89}{28\!\cdots\!56}a^{5}-\frac{17\!\cdots\!83}{14\!\cdots\!28}a^{4}-\frac{34\!\cdots\!75}{23\!\cdots\!88}a^{3}+\frac{69\!\cdots\!99}{39\!\cdots\!48}a^{2}+\frac{17\!\cdots\!65}{59\!\cdots\!22}a-\frac{10\!\cdots\!53}{99\!\cdots\!87}$, $\frac{22\!\cdots\!57}{74\!\cdots\!52}a^{35}-\frac{62\!\cdots\!89}{74\!\cdots\!52}a^{34}-\frac{71\!\cdots\!27}{27\!\cdots\!76}a^{33}+\frac{14\!\cdots\!35}{12\!\cdots\!92}a^{32}+\frac{11\!\cdots\!03}{77\!\cdots\!12}a^{31}-\frac{22\!\cdots\!87}{24\!\cdots\!84}a^{30}+\frac{40\!\cdots\!39}{24\!\cdots\!84}a^{29}+\frac{12\!\cdots\!59}{41\!\cdots\!64}a^{28}-\frac{15\!\cdots\!97}{12\!\cdots\!92}a^{27}-\frac{95\!\cdots\!39}{93\!\cdots\!44}a^{26}+\frac{31\!\cdots\!43}{74\!\cdots\!52}a^{25}-\frac{13\!\cdots\!31}{31\!\cdots\!48}a^{24}-\frac{19\!\cdots\!35}{24\!\cdots\!84}a^{23}+\frac{74\!\cdots\!67}{62\!\cdots\!96}a^{22}+\frac{75\!\cdots\!43}{24\!\cdots\!84}a^{21}+\frac{55\!\cdots\!33}{62\!\cdots\!96}a^{20}-\frac{72\!\cdots\!79}{41\!\cdots\!64}a^{19}-\frac{47\!\cdots\!67}{62\!\cdots\!96}a^{18}+\frac{36\!\cdots\!33}{74\!\cdots\!52}a^{17}+\frac{16\!\cdots\!05}{74\!\cdots\!52}a^{16}-\frac{20\!\cdots\!25}{38\!\cdots\!56}a^{15}-\frac{29\!\cdots\!83}{41\!\cdots\!64}a^{14}+\frac{20\!\cdots\!35}{24\!\cdots\!84}a^{13}+\frac{19\!\cdots\!09}{91\!\cdots\!92}a^{12}-\frac{82\!\cdots\!09}{82\!\cdots\!28}a^{11}-\frac{99\!\cdots\!85}{41\!\cdots\!64}a^{10}+\frac{20\!\cdots\!57}{45\!\cdots\!96}a^{9}-\frac{68\!\cdots\!77}{68\!\cdots\!44}a^{8}-\frac{17\!\cdots\!59}{43\!\cdots\!84}a^{7}+\frac{98\!\cdots\!47}{28\!\cdots\!56}a^{6}+\frac{10\!\cdots\!17}{23\!\cdots\!88}a^{5}-\frac{99\!\cdots\!99}{35\!\cdots\!32}a^{4}+\frac{44\!\cdots\!35}{26\!\cdots\!32}a^{3}+\frac{69\!\cdots\!55}{11\!\cdots\!44}a^{2}-\frac{51\!\cdots\!67}{59\!\cdots\!22}a+\frac{59\!\cdots\!71}{33\!\cdots\!29}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 21081556352989.12 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{18}\cdot 21081556352989.12 \cdot 54}{18\cdot\sqrt{1071030693901388898753512531277917413271669334372589558569}}\cr\approx \mathstrut & 0.450153463790204 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^36 - 3*x^35 - 9*x^34 + 42*x^33 + 6*x^32 - 333*x^31 + 591*x^30 + 1194*x^29 - 4608*x^28 - 668*x^27 + 17499*x^26 - 15678*x^25 - 36231*x^24 + 53814*x^23 + 124803*x^22 - 24558*x^21 - 687768*x^20 - 167544*x^19 + 2193193*x^18 + 720423*x^17 - 3444336*x^16 - 2946924*x^15 + 2834649*x^14 + 9321507*x^13 - 5570397*x^12 - 13865742*x^11 + 18532800*x^10 + 4607712*x^9 - 26329536*x^8 + 9681120*x^7 + 19051200*x^6 - 18009216*x^5 - 1866240*x^4 + 11943936*x^3 - 4478976*x^2 - 4478976*x + 2985984)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^36 - 3*x^35 - 9*x^34 + 42*x^33 + 6*x^32 - 333*x^31 + 591*x^30 + 1194*x^29 - 4608*x^28 - 668*x^27 + 17499*x^26 - 15678*x^25 - 36231*x^24 + 53814*x^23 + 124803*x^22 - 24558*x^21 - 687768*x^20 - 167544*x^19 + 2193193*x^18 + 720423*x^17 - 3444336*x^16 - 2946924*x^15 + 2834649*x^14 + 9321507*x^13 - 5570397*x^12 - 13865742*x^11 + 18532800*x^10 + 4607712*x^9 - 26329536*x^8 + 9681120*x^7 + 19051200*x^6 - 18009216*x^5 - 1866240*x^4 + 11943936*x^3 - 4478976*x^2 - 4478976*x + 2985984, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^36 - 3*x^35 - 9*x^34 + 42*x^33 + 6*x^32 - 333*x^31 + 591*x^30 + 1194*x^29 - 4608*x^28 - 668*x^27 + 17499*x^26 - 15678*x^25 - 36231*x^24 + 53814*x^23 + 124803*x^22 - 24558*x^21 - 687768*x^20 - 167544*x^19 + 2193193*x^18 + 720423*x^17 - 3444336*x^16 - 2946924*x^15 + 2834649*x^14 + 9321507*x^13 - 5570397*x^12 - 13865742*x^11 + 18532800*x^10 + 4607712*x^9 - 26329536*x^8 + 9681120*x^7 + 19051200*x^6 - 18009216*x^5 - 1866240*x^4 + 11943936*x^3 - 4478976*x^2 - 4478976*x + 2985984);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - 3*x^35 - 9*x^34 + 42*x^33 + 6*x^32 - 333*x^31 + 591*x^30 + 1194*x^29 - 4608*x^28 - 668*x^27 + 17499*x^26 - 15678*x^25 - 36231*x^24 + 53814*x^23 + 124803*x^22 - 24558*x^21 - 687768*x^20 - 167544*x^19 + 2193193*x^18 + 720423*x^17 - 3444336*x^16 - 2946924*x^15 + 2834649*x^14 + 9321507*x^13 - 5570397*x^12 - 13865742*x^11 + 18532800*x^10 + 4607712*x^9 - 26329536*x^8 + 9681120*x^7 + 19051200*x^6 - 18009216*x^5 - 1866240*x^4 + 11943936*x^3 - 4478976*x^2 - 4478976*x + 2985984);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times A_4\times D_6$ (as 36T334):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 288
The 48 conjugacy class representatives for $C_2\times A_4\times D_6$
Character table for $C_2\times A_4\times D_6$

Intermediate fields

\(\Q(\sqrt{-3}) \), 3.3.621.1, \(\Q(\zeta_{9})^+\), 6.6.1397493.1, 6.0.465831.1, 6.0.1156923.1, \(\Q(\zeta_{9})\), 9.9.174583151469.1, 12.0.1952986685049.1, 18.0.91437830330543390573883.1, 18.18.32726605291435115463689038413.1, 18.0.10908868430478371821229679471.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 36 siblings: deg 36, deg 36, deg 36, deg 36, deg 36, deg 36, deg 36, deg 36, deg 36, some data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.6.0.1}{6} }^{6}$ R ${\href{/padicField/5.6.0.1}{6} }^{6}$ ${\href{/padicField/7.6.0.1}{6} }^{6}$ ${\href{/padicField/11.6.0.1}{6} }^{6}$ ${\href{/padicField/13.6.0.1}{6} }^{6}$ ${\href{/padicField/17.6.0.1}{6} }^{6}$ ${\href{/padicField/19.2.0.1}{2} }^{16}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ R ${\href{/padicField/29.6.0.1}{6} }^{6}$ ${\href{/padicField/31.6.0.1}{6} }^{6}$ ${\href{/padicField/37.2.0.1}{2} }^{16}{,}\,{\href{/padicField/37.1.0.1}{1} }^{4}$ ${\href{/padicField/41.6.0.1}{6} }^{6}$ ${\href{/padicField/43.6.0.1}{6} }^{4}{,}\,{\href{/padicField/43.3.0.1}{3} }^{4}$ ${\href{/padicField/47.6.0.1}{6} }^{6}$ ${\href{/padicField/53.6.0.1}{6} }^{6}$ ${\href{/padicField/59.6.0.1}{6} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display Deg $18$$18$$1$$31$
Deg $18$$18$$1$$31$
\(23\) Copy content Toggle raw display 23.6.0.1$x^{6} + x^{4} + 9 x^{3} + 9 x^{2} + x + 5$$1$$6$$0$$C_6$$[\ ]^{6}$
23.6.0.1$x^{6} + x^{4} + 9 x^{3} + 9 x^{2} + x + 5$$1$$6$$0$$C_6$$[\ ]^{6}$
23.12.6.1$x^{12} + 140 x^{10} + 18 x^{9} + 8092 x^{8} + 20 x^{7} + 244001 x^{6} - 56140 x^{5} + 4059563 x^{4} - 1721304 x^{3} + 36312468 x^{2} - 14694000 x + 141161628$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
23.12.6.1$x^{12} + 140 x^{10} + 18 x^{9} + 8092 x^{8} + 20 x^{7} + 244001 x^{6} - 56140 x^{5} + 4059563 x^{4} - 1721304 x^{3} + 36312468 x^{2} - 14694000 x + 141161628$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
\(71\) Copy content Toggle raw display 71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.4.2.1$x^{4} + 138 x^{3} + 4917 x^{2} + 10764 x + 342127$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
71.4.2.1$x^{4} + 138 x^{3} + 4917 x^{2} + 10764 x + 342127$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
71.4.2.1$x^{4} + 138 x^{3} + 4917 x^{2} + 10764 x + 342127$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$