# SageMath code for working with number field 35.35.705021958507555897735769309192822159832506785420715156309512394727789796888828277587890625.1 # (Note that not all these functions may be available, and some may take a long time to execute.) # Define the number field: x = polygen(QQ); K. = NumberField(x^35 - 175*x^33 - 70*x^32 + 13125*x^31 + 9702*x^30 - 556640*x^29 - 573225*x^28 + 14844900*x^27 + 19050185*x^26 - 261854635*x^25 - 394847250*x^24 + 3128435905*x^23 + 5347852195*x^22 - 25515383355*x^21 - 48297678121*x^20 + 141795944465*x^19 + 292585456625*x^18 - 533394487115*x^17 - 1187150912745*x^16 + 1349113537702*x^15 + 3207931617015*x^14 - 2286376450785*x^13 - 5710072444965*x^12 + 2606036871270*x^11 + 6560227221870*x^10 - 2026242763720*x^9 - 4691478893710*x^8 + 1084067118185*x^7 + 1962115542205*x^6 - 373976828869*x^5 - 432767079290*x^4 + 65717425060*x^3 + 43746645075*x^2 - 3865111915*x - 1645272349) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Galois group: K.galois_group(type='pari') # Frobenius cycle types: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]