# SageMath code for working with number field 35.35.1455622807785591094953547155658149343464416905925495778881639129313848614446169.1 # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: x = polygen(QQ); K. = NumberField(x^35 - 2*x^34 - 121*x^33 + 124*x^32 + 6435*x^31 - 1020*x^30 - 195036*x^29 - 112597*x^28 + 3683986*x^27 + 4452851*x^26 - 44769607*x^25 - 80359740*x^24 + 347984933*x^23 + 850835561*x^22 - 1630509423*x^21 - 5621246939*x^20 + 3615565971*x^19 + 23234081997*x^18 + 3088781711*x^17 - 57619940147*x^16 - 39347873390*x^15 + 76695393961*x^14 + 92864249975*x^13 - 38675667681*x^12 - 94158719636*x^11 - 10380297650*x^10 + 42855721796*x^9 + 16263455858*x^8 - 7226936109*x^7 - 4634581071*x^6 - 47622511*x^5 + 349101928*x^4 + 70736582*x^3 + 5060011*x^2 + 136327*x + 859) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Autmorphisms: K.automorphisms() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Analytic class number formula: # self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K. = NumberField(x^35 - 2*x^34 - 121*x^33 + 124*x^32 + 6435*x^31 - 1020*x^30 - 195036*x^29 - 112597*x^28 + 3683986*x^27 + 4452851*x^26 - 44769607*x^25 - 80359740*x^24 + 347984933*x^23 + 850835561*x^22 - 1630509423*x^21 - 5621246939*x^20 + 3615565971*x^19 + 23234081997*x^18 + 3088781711*x^17 - 57619940147*x^16 - 39347873390*x^15 + 76695393961*x^14 + 92864249975*x^13 - 38675667681*x^12 - 94158719636*x^11 - 10380297650*x^10 + 42855721796*x^9 + 16263455858*x^8 - 7226936109*x^7 - 4634581071*x^6 - 47622511*x^5 + 349101928*x^4 + 70736582*x^3 + 5060011*x^2 + 136327*x + 859) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK)))) # Intermediate fields: K.subfields()[1:-1] # Galois group: K.galois_group(type='pari') # Frobenius cycle types: # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]