// Magma code for working with number field 35.35.1455622807785591094953547155658149343464416905925495778881639129313848614446169.1 // (Note that not all these functions may be available, and some may take a long time to execute.) // Define the number field: R := PolynomialRing(Rationals()); K := NumberField(R![859, 136327, 5060011, 70736582, 349101928, -47622511, -4634581071, -7226936109, 16263455858, 42855721796, -10380297650, -94158719636, -38675667681, 92864249975, 76695393961, -39347873390, -57619940147, 3088781711, 23234081997, 3615565971, -5621246939, -1630509423, 850835561, 347984933, -80359740, -44769607, 4452851, 3683986, -112597, -195036, -1020, 6435, 124, -121, -2, 1]); // Defining polynomial: DefiningPolynomial(K); // Degree over Q: Degree(K); // Signature: Signature(K); // Discriminant: Discriminant(Integers(K)); // Ramified primes: PrimeDivisors(Discriminant(Integers(K))); // Integral basis: IntegralBasis(K); // Class group: ClassGroup(K); // Unit group: UK, f := UnitGroup(K); // Unit rank: UnitRank(K); // Generator for roots of unity: K!f(TU.1) where TU,f is TorsionUnitGroup(K); // Fundamental units: [K!f(g): g in Generators(UK)]; // Regulator: Regulator(K); // Galois group: GaloisGroup(K); // Frobenius cycle types: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$: idealfactors := Factorization(p*Integers(K)); // get the data [ : primefactor in idealfactors];