Properties

Label 35.35.126...761.1
Degree $35$
Signature $[35, 0]$
Discriminant $1.264\times 10^{92}$
Root discriminant \(428.04\)
Ramified primes $11,71$
Class number not computed
Class group not computed
Galois group $C_{35}$ (as 35T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^35 - x^34 - 318*x^33 + 317*x^32 + 43270*x^31 - 44942*x^30 - 3310862*x^29 + 3668450*x^28 + 157558384*x^27 - 185600815*x^26 - 4874575299*x^25 + 5926292085*x^24 + 99830505974*x^23 - 118520702371*x^22 - 1360601812909*x^21 + 1450494933204*x^20 + 12343981755562*x^19 - 10508898867517*x^18 - 74032961784647*x^17 + 42704647887631*x^16 + 287498465575547*x^15 - 88218677962585*x^14 - 700005264128682*x^13 + 73955415615078*x^12 + 1050451088258971*x^11 + 22743315993476*x^10 - 954692059092009*x^9 - 86158127076259*x^8 + 507760932924813*x^7 + 58457767140166*x^6 - 148182973420093*x^5 - 15997207615891*x^4 + 21209750016487*x^3 + 1792377500264*x^2 - 1107362185802*x - 70566500269)
 
gp: K = bnfinit(y^35 - y^34 - 318*y^33 + 317*y^32 + 43270*y^31 - 44942*y^30 - 3310862*y^29 + 3668450*y^28 + 157558384*y^27 - 185600815*y^26 - 4874575299*y^25 + 5926292085*y^24 + 99830505974*y^23 - 118520702371*y^22 - 1360601812909*y^21 + 1450494933204*y^20 + 12343981755562*y^19 - 10508898867517*y^18 - 74032961784647*y^17 + 42704647887631*y^16 + 287498465575547*y^15 - 88218677962585*y^14 - 700005264128682*y^13 + 73955415615078*y^12 + 1050451088258971*y^11 + 22743315993476*y^10 - 954692059092009*y^9 - 86158127076259*y^8 + 507760932924813*y^7 + 58457767140166*y^6 - 148182973420093*y^5 - 15997207615891*y^4 + 21209750016487*y^3 + 1792377500264*y^2 - 1107362185802*y - 70566500269, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^35 - x^34 - 318*x^33 + 317*x^32 + 43270*x^31 - 44942*x^30 - 3310862*x^29 + 3668450*x^28 + 157558384*x^27 - 185600815*x^26 - 4874575299*x^25 + 5926292085*x^24 + 99830505974*x^23 - 118520702371*x^22 - 1360601812909*x^21 + 1450494933204*x^20 + 12343981755562*x^19 - 10508898867517*x^18 - 74032961784647*x^17 + 42704647887631*x^16 + 287498465575547*x^15 - 88218677962585*x^14 - 700005264128682*x^13 + 73955415615078*x^12 + 1050451088258971*x^11 + 22743315993476*x^10 - 954692059092009*x^9 - 86158127076259*x^8 + 507760932924813*x^7 + 58457767140166*x^6 - 148182973420093*x^5 - 15997207615891*x^4 + 21209750016487*x^3 + 1792377500264*x^2 - 1107362185802*x - 70566500269);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^35 - x^34 - 318*x^33 + 317*x^32 + 43270*x^31 - 44942*x^30 - 3310862*x^29 + 3668450*x^28 + 157558384*x^27 - 185600815*x^26 - 4874575299*x^25 + 5926292085*x^24 + 99830505974*x^23 - 118520702371*x^22 - 1360601812909*x^21 + 1450494933204*x^20 + 12343981755562*x^19 - 10508898867517*x^18 - 74032961784647*x^17 + 42704647887631*x^16 + 287498465575547*x^15 - 88218677962585*x^14 - 700005264128682*x^13 + 73955415615078*x^12 + 1050451088258971*x^11 + 22743315993476*x^10 - 954692059092009*x^9 - 86158127076259*x^8 + 507760932924813*x^7 + 58457767140166*x^6 - 148182973420093*x^5 - 15997207615891*x^4 + 21209750016487*x^3 + 1792377500264*x^2 - 1107362185802*x - 70566500269)
 

\( x^{35} - x^{34} - 318 x^{33} + 317 x^{32} + 43270 x^{31} - 44942 x^{30} - 3310862 x^{29} + \cdots - 70566500269 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $35$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[35, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(126\!\cdots\!761\) \(\medspace = 11^{28}\cdot 71^{34}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(428.04\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $11^{4/5}71^{34/35}\approx 428.03511715789494$
Ramified primes:   \(11\), \(71\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $35$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(781=11\cdot 71\)
Dirichlet character group:    $\lbrace$$\chi_{781}(256,·)$, $\chi_{781}(1,·)$, $\chi_{781}(4,·)$, $\chi_{781}(654,·)$, $\chi_{781}(16,·)$, $\chi_{781}(273,·)$, $\chi_{781}(658,·)$, $\chi_{781}(533,·)$, $\chi_{781}(537,·)$, $\chi_{781}(289,·)$, $\chi_{781}(290,·)$, $\chi_{781}(554,·)$, $\chi_{781}(555,·)$, $\chi_{781}(45,·)$, $\chi_{781}(180,·)$, $\chi_{781}(311,·)$, $\chi_{781}(570,·)$, $\chi_{781}(191,·)$, $\chi_{781}(64,·)$, $\chi_{781}(713,·)$, $\chi_{781}(586,·)$, $\chi_{781}(334,·)$, $\chi_{781}(463,·)$, $\chi_{781}(720,·)$, $\chi_{781}(718,·)$, $\chi_{781}(474,·)$, $\chi_{781}(719,·)$, $\chi_{781}(735,·)$, $\chi_{781}(529,·)$, $\chi_{781}(243,·)$, $\chi_{781}(375,·)$, $\chi_{781}(379,·)$, $\chi_{781}(764,·)$, $\chi_{781}(509,·)$, $\chi_{781}(597,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $\frac{1}{1062797297}a^{33}-\frac{234573137}{1062797297}a^{32}-\frac{124532291}{1062797297}a^{31}-\frac{338863135}{1062797297}a^{30}-\frac{347967678}{1062797297}a^{29}+\frac{460210024}{1062797297}a^{28}+\frac{504350687}{1062797297}a^{27}+\frac{266591191}{1062797297}a^{26}+\frac{345196345}{1062797297}a^{25}-\frac{274819430}{1062797297}a^{24}+\frac{531104667}{1062797297}a^{23}+\frac{222016088}{1062797297}a^{22}+\frac{266886399}{1062797297}a^{21}-\frac{128921813}{1062797297}a^{20}+\frac{428415734}{1062797297}a^{19}-\frac{50991096}{1062797297}a^{18}-\frac{351479831}{1062797297}a^{17}+\frac{430710182}{1062797297}a^{16}-\frac{22441838}{1062797297}a^{15}-\frac{105663327}{1062797297}a^{14}-\frac{258046606}{1062797297}a^{13}+\frac{100991973}{1062797297}a^{12}+\frac{336357246}{1062797297}a^{11}-\frac{485065871}{1062797297}a^{10}-\frac{336235451}{1062797297}a^{9}+\frac{164689592}{1062797297}a^{8}-\frac{270651390}{1062797297}a^{7}-\frac{341354357}{1062797297}a^{6}+\frac{173862662}{1062797297}a^{5}-\frac{37680672}{1062797297}a^{4}-\frac{6183633}{1062797297}a^{3}+\frac{363805044}{1062797297}a^{2}-\frac{65758459}{1062797297}a-\frac{446518683}{1062797297}$, $\frac{1}{19\!\cdots\!41}a^{34}-\frac{79\!\cdots\!76}{19\!\cdots\!41}a^{33}+\frac{90\!\cdots\!67}{19\!\cdots\!41}a^{32}+\frac{78\!\cdots\!22}{19\!\cdots\!41}a^{31}+\frac{35\!\cdots\!62}{19\!\cdots\!41}a^{30}+\frac{19\!\cdots\!27}{19\!\cdots\!41}a^{29}+\frac{73\!\cdots\!64}{19\!\cdots\!41}a^{28}-\frac{97\!\cdots\!87}{19\!\cdots\!41}a^{27}-\frac{25\!\cdots\!38}{19\!\cdots\!41}a^{26}-\frac{19\!\cdots\!87}{19\!\cdots\!41}a^{25}+\frac{78\!\cdots\!02}{19\!\cdots\!41}a^{24}+\frac{14\!\cdots\!47}{19\!\cdots\!41}a^{23}-\frac{83\!\cdots\!04}{19\!\cdots\!41}a^{22}-\frac{79\!\cdots\!70}{19\!\cdots\!41}a^{21}+\frac{36\!\cdots\!20}{19\!\cdots\!41}a^{20}-\frac{71\!\cdots\!67}{19\!\cdots\!41}a^{19}+\frac{88\!\cdots\!08}{19\!\cdots\!41}a^{18}-\frac{97\!\cdots\!57}{19\!\cdots\!41}a^{17}-\frac{76\!\cdots\!66}{19\!\cdots\!41}a^{16}-\frac{52\!\cdots\!93}{19\!\cdots\!41}a^{15}-\frac{76\!\cdots\!61}{19\!\cdots\!41}a^{14}+\frac{71\!\cdots\!98}{19\!\cdots\!41}a^{13}+\frac{41\!\cdots\!81}{19\!\cdots\!41}a^{12}+\frac{37\!\cdots\!01}{19\!\cdots\!41}a^{11}-\frac{72\!\cdots\!84}{19\!\cdots\!41}a^{10}+\frac{84\!\cdots\!88}{19\!\cdots\!41}a^{9}+\frac{87\!\cdots\!37}{19\!\cdots\!41}a^{8}+\frac{49\!\cdots\!49}{19\!\cdots\!41}a^{7}-\frac{63\!\cdots\!56}{19\!\cdots\!41}a^{6}+\frac{51\!\cdots\!29}{19\!\cdots\!41}a^{5}-\frac{88\!\cdots\!26}{19\!\cdots\!41}a^{4}+\frac{70\!\cdots\!63}{19\!\cdots\!41}a^{3}-\frac{97\!\cdots\!87}{19\!\cdots\!41}a^{2}-\frac{41\!\cdots\!54}{19\!\cdots\!41}a+\frac{82\!\cdots\!15}{19\!\cdots\!41}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $34$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^35 - x^34 - 318*x^33 + 317*x^32 + 43270*x^31 - 44942*x^30 - 3310862*x^29 + 3668450*x^28 + 157558384*x^27 - 185600815*x^26 - 4874575299*x^25 + 5926292085*x^24 + 99830505974*x^23 - 118520702371*x^22 - 1360601812909*x^21 + 1450494933204*x^20 + 12343981755562*x^19 - 10508898867517*x^18 - 74032961784647*x^17 + 42704647887631*x^16 + 287498465575547*x^15 - 88218677962585*x^14 - 700005264128682*x^13 + 73955415615078*x^12 + 1050451088258971*x^11 + 22743315993476*x^10 - 954692059092009*x^9 - 86158127076259*x^8 + 507760932924813*x^7 + 58457767140166*x^6 - 148182973420093*x^5 - 15997207615891*x^4 + 21209750016487*x^3 + 1792377500264*x^2 - 1107362185802*x - 70566500269)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^35 - x^34 - 318*x^33 + 317*x^32 + 43270*x^31 - 44942*x^30 - 3310862*x^29 + 3668450*x^28 + 157558384*x^27 - 185600815*x^26 - 4874575299*x^25 + 5926292085*x^24 + 99830505974*x^23 - 118520702371*x^22 - 1360601812909*x^21 + 1450494933204*x^20 + 12343981755562*x^19 - 10508898867517*x^18 - 74032961784647*x^17 + 42704647887631*x^16 + 287498465575547*x^15 - 88218677962585*x^14 - 700005264128682*x^13 + 73955415615078*x^12 + 1050451088258971*x^11 + 22743315993476*x^10 - 954692059092009*x^9 - 86158127076259*x^8 + 507760932924813*x^7 + 58457767140166*x^6 - 148182973420093*x^5 - 15997207615891*x^4 + 21209750016487*x^3 + 1792377500264*x^2 - 1107362185802*x - 70566500269, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^35 - x^34 - 318*x^33 + 317*x^32 + 43270*x^31 - 44942*x^30 - 3310862*x^29 + 3668450*x^28 + 157558384*x^27 - 185600815*x^26 - 4874575299*x^25 + 5926292085*x^24 + 99830505974*x^23 - 118520702371*x^22 - 1360601812909*x^21 + 1450494933204*x^20 + 12343981755562*x^19 - 10508898867517*x^18 - 74032961784647*x^17 + 42704647887631*x^16 + 287498465575547*x^15 - 88218677962585*x^14 - 700005264128682*x^13 + 73955415615078*x^12 + 1050451088258971*x^11 + 22743315993476*x^10 - 954692059092009*x^9 - 86158127076259*x^8 + 507760932924813*x^7 + 58457767140166*x^6 - 148182973420093*x^5 - 15997207615891*x^4 + 21209750016487*x^3 + 1792377500264*x^2 - 1107362185802*x - 70566500269);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^35 - x^34 - 318*x^33 + 317*x^32 + 43270*x^31 - 44942*x^30 - 3310862*x^29 + 3668450*x^28 + 157558384*x^27 - 185600815*x^26 - 4874575299*x^25 + 5926292085*x^24 + 99830505974*x^23 - 118520702371*x^22 - 1360601812909*x^21 + 1450494933204*x^20 + 12343981755562*x^19 - 10508898867517*x^18 - 74032961784647*x^17 + 42704647887631*x^16 + 287498465575547*x^15 - 88218677962585*x^14 - 700005264128682*x^13 + 73955415615078*x^12 + 1050451088258971*x^11 + 22743315993476*x^10 - 954692059092009*x^9 - 86158127076259*x^8 + 507760932924813*x^7 + 58457767140166*x^6 - 148182973420093*x^5 - 15997207615891*x^4 + 21209750016487*x^3 + 1792377500264*x^2 - 1107362185802*x - 70566500269);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{35}$ (as 35T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 35
The 35 conjugacy class representatives for $C_{35}$
Character table for $C_{35}$

Intermediate fields

5.5.372052421521.2, 7.7.128100283921.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $35$ $35$ ${\href{/padicField/5.5.0.1}{5} }^{7}$ ${\href{/padicField/7.7.0.1}{7} }^{5}$ R $35$ ${\href{/padicField/17.5.0.1}{5} }^{7}$ $35$ ${\href{/padicField/23.7.0.1}{7} }^{5}$ $35$ $35$ $35$ $35$ $35$ ${\href{/padicField/47.7.0.1}{7} }^{5}$ ${\href{/padicField/53.7.0.1}{7} }^{5}$ $35$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(11\) Copy content Toggle raw display Deg $35$$5$$7$$28$
\(71\) Copy content Toggle raw display Deg $35$$35$$1$$34$