Properties

Label 35.1.189...464.1
Degree $35$
Signature $[1, 17]$
Discriminant $-1.894\times 10^{64}$
Root discriminant \(68.63\)
Ramified primes see page
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_{35}$ (as 35T407)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^35 - x - 2)
 
gp: K = bnfinit(y^35 - y - 2, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^35 - x - 2);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^35 - x - 2)
 

\( x^{35} - x - 2 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $35$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 17]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-18940934613271482445230512681138585949498689644445382058090430464\) \(\medspace = -\,2^{35}\cdot 23\cdot 29\cdot 5408561\cdot 3295715551039421859593\cdot 46365427582714972609103\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(68.63\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(23\), \(29\), \(5408561\), \(3295715551039421859593\), \(46365427582714972609103\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{-11025\!\cdots\!59546}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $17$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a^{18}-a-1$, $a^{28}+a^{21}+a^{14}+a^{7}+1$, $a^{34}-a^{33}+a^{27}-a^{26}+a^{20}-a^{19}+a^{13}-a^{12}+a^{6}-a^{5}-1$, $a^{4}+a^{3}+a^{2}+a+1$, $a^{8}-a^{4}+1$, $a^{34}-a^{33}+a^{32}-a^{31}+a^{23}-a^{22}+a^{21}-a^{20}+a^{19}-a^{11}+a^{10}-a^{9}+a^{8}-a^{7}-1$, $a^{33}-a^{31}+a^{29}-a^{27}+a^{25}-a^{23}+a^{21}-a^{19}+a^{17}-a^{15}+a^{13}-a^{11}-a^{5}+a^{3}+a^{2}-a-1$, $a^{33}-a^{30}+a^{27}+a^{26}-a^{24}-a^{23}+a^{21}-a^{18}+a^{15}+a^{14}-a^{13}-a^{12}-a^{11}+2a^{10}+a^{9}+a^{8}-a^{7}-a^{6}-a^{5}+a^{3}-a-1$, $a^{29}+a^{23}+a^{22}+a^{16}-a^{15}-a^{13}-a^{9}-a^{8}-a^{7}-a^{6}-a^{3}-a^{2}-1$, $2a^{34}-a^{33}-2a^{32}-a^{30}+2a^{29}-a^{27}+3a^{26}-2a^{22}+a^{21}-a^{20}-2a^{19}+a^{18}+2a^{16}+2a^{15}-a^{14}+a^{13}+a^{12}-a^{11}-a^{10}-3a^{9}-a^{8}+2a^{7}-2a^{6}+3a^{4}+2a^{3}+2a^{2}-3a-3$, $2a^{34}-2a^{33}+2a^{31}-3a^{30}-4a^{29}+a^{27}-a^{26}-a^{25}+4a^{24}+4a^{23}-a^{21}+a^{20}-5a^{18}-4a^{17}+a^{16}-a^{14}+a^{13}+6a^{12}+5a^{11}-2a^{10}-a^{9}+2a^{8}-3a^{7}-8a^{6}-3a^{5}+3a^{4}-a^{3}-2a^{2}+6a+7$, $4a^{34}+4a^{33}+11a^{32}+10a^{31}+11a^{30}+11a^{29}+8a^{28}+4a^{27}-a^{26}-3a^{25}-12a^{24}-11a^{23}-15a^{22}-14a^{21}-14a^{20}-7a^{19}-5a^{18}+2a^{17}+10a^{16}+13a^{15}+18a^{14}+19a^{13}+20a^{12}+12a^{11}+12a^{10}+a^{9}-6a^{8}-14a^{7}-19a^{6}-26a^{5}-26a^{4}-21a^{3}-20a^{2}-8a-3$, $3a^{33}-3a^{32}+3a^{30}-a^{29}+a^{28}-a^{27}-a^{26}+a^{25}-2a^{24}+2a^{23}+a^{22}-6a^{21}+a^{20}-2a^{18}+2a^{17}-a^{16}-a^{15}-a^{14}-2a^{13}+5a^{12}-a^{11}-3a^{10}+3a^{9}-2a^{8}+5a^{6}-a^{5}-2a^{3}+5a-1$, $a^{34}+a^{33}+2a^{32}+3a^{31}+2a^{30}+3a^{29}+2a^{28}-2a^{25}-3a^{24}-4a^{23}-4a^{22}-4a^{21}-3a^{20}+2a^{17}+5a^{16}+4a^{15}+5a^{14}+5a^{13}+3a^{12}+a^{11}-a^{9}-5a^{8}-4a^{7}-4a^{6}-6a^{5}-4a^{4}-3a^{3}-3a^{2}-a+1$, $a^{33}-a^{32}+a^{31}+2a^{30}-3a^{29}+a^{28}+4a^{27}-5a^{26}+a^{25}+3a^{24}-3a^{23}+a^{22}-a^{21}-a^{20}+2a^{19}-a^{18}-4a^{17}+4a^{16}-6a^{14}+5a^{13}-a^{12}-2a^{11}+a^{10}-2a^{9}+a^{8}+2a^{7}-4a^{6}-a^{5}+7a^{4}-6a^{3}-a^{2}+6a-3$, $13a^{34}+4a^{33}-17a^{32}+7a^{31}-7a^{29}+18a^{28}-3a^{27}-16a^{26}+10a^{25}-5a^{24}-2a^{23}+20a^{22}-12a^{21}-12a^{20}+11a^{19}-9a^{18}+6a^{17}+19a^{16}-20a^{15}-6a^{14}+10a^{13}-12a^{12}+15a^{11}+13a^{10}-26a^{9}+a^{8}+7a^{7}-11a^{6}+24a^{5}+4a^{4}-28a^{3}+8a^{2}-19$, $5a^{34}+a^{33}+4a^{32}+6a^{31}+2a^{30}+5a^{29}+4a^{28}+3a^{26}+2a^{25}+2a^{23}+2a^{22}-2a^{21}-a^{20}-3a^{19}-8a^{18}-4a^{17}-7a^{16}-9a^{15}-2a^{14}-7a^{13}-7a^{12}-3a^{11}-8a^{10}-6a^{9}-3a^{8}-4a^{7}+4a^{5}+2a^{4}+4a^{3}+8a^{2}+2a+1$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 3872969546476688000 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{17}\cdot 3872969546476688000 \cdot 1}{2\cdot\sqrt{18940934613271482445230512681138585949498689644445382058090430464}}\cr\approx \mathstrut & 1.04328062426899 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^35 - x - 2)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^35 - x - 2, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^35 - x - 2);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^35 - x - 2);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{35}$ (as 35T407):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 10333147966386144929666651337523200000000
The 14883 conjugacy class representatives for $S_{35}$ are not computed
Character table for $S_{35}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $32{,}\,{\href{/padicField/3.3.0.1}{3} }$ $26{,}\,{\href{/padicField/5.7.0.1}{7} }{,}\,{\href{/padicField/5.2.0.1}{2} }$ ${\href{/padicField/7.11.0.1}{11} }{,}\,{\href{/padicField/7.10.0.1}{10} }{,}\,{\href{/padicField/7.7.0.1}{7} }{,}\,{\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ ${\href{/padicField/11.14.0.1}{14} }{,}\,{\href{/padicField/11.13.0.1}{13} }{,}\,{\href{/padicField/11.7.0.1}{7} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ $24{,}\,{\href{/padicField/13.11.0.1}{11} }$ $17{,}\,{\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.3.0.1}{3} }^{2}$ $18{,}\,17$ R R $29{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ $17{,}\,15{,}\,{\href{/padicField/37.3.0.1}{3} }$ $27{,}\,{\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }$ $15{,}\,{\href{/padicField/43.11.0.1}{11} }{,}\,{\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.14.0.1}{14} }{,}\,{\href{/padicField/47.13.0.1}{13} }{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }$ $26{,}\,{\href{/padicField/53.5.0.1}{5} }{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.13.0.1}{13} }{,}\,{\href{/padicField/59.11.0.1}{11} }{,}\,{\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display $\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.2.3.4$x^{2} + 10$$2$$1$$3$$C_2$$[3]$
Deg $16$$2$$8$$16$
Deg $16$$2$$8$$16$
\(23\) Copy content Toggle raw display 23.2.1.2$x^{2} + 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.6.0.1$x^{6} + x^{4} + 9 x^{3} + 9 x^{2} + x + 5$$1$$6$$0$$C_6$$[\ ]^{6}$
Deg $27$$1$$27$$0$$C_{27}$$[\ ]^{27}$
\(29\) Copy content Toggle raw display 29.2.1.1$x^{2} + 29$$2$$1$$1$$C_2$$[\ ]_{2}$
29.16.0.1$x^{16} + 6 x^{8} + 27 x^{7} + 2 x^{6} + 18 x^{5} + 23 x^{4} + x^{3} + 27 x^{2} + 10 x + 2$$1$$16$$0$$C_{16}$$[\ ]^{16}$
29.17.0.1$x^{17} + 2 x + 27$$1$$17$$0$$C_{17}$$[\ ]^{17}$
\(5408561\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $29$$1$$29$$0$$C_{29}$$[\ ]^{29}$
\(329\!\cdots\!593\) Copy content Toggle raw display Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $7$$1$$7$$0$$C_7$$[\ ]^{7}$
Deg $22$$1$$22$$0$22T1$[\ ]^{22}$
\(463\!\cdots\!103\) Copy content Toggle raw display $\Q_{46\!\cdots\!03}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $15$$1$$15$$0$$C_{15}$$[\ ]^{15}$
Deg $17$$1$$17$$0$$C_{17}$$[\ ]^{17}$