Normalized defining polynomial
\( x^{34} - 103 x^{32} + 4532 x^{30} - 112167 x^{28} + 1731739 x^{26} - 17499597 x^{24} + 118248223 x^{22} - 536414833 x^{20} + 1616755259 x^{18} - 3162397876 x^{16} + 3877277925 x^{14} - 2861712448 x^{12} + 1228671035 x^{10} - 297008328 x^{8} + 38356067 x^{6} - 2421530 x^{4} + 58813 x^{2} - 103 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{47} a^{24} + \frac{19}{47} a^{22} + \frac{14}{47} a^{20} - \frac{12}{47} a^{18} + \frac{6}{47} a^{16} + \frac{16}{47} a^{14} + \frac{9}{47} a^{12} + \frac{6}{47} a^{10} - \frac{4}{47} a^{8} - \frac{18}{47} a^{6} + \frac{10}{47} a^{4} - \frac{18}{47} a^{2} + \frac{18}{47}$, $\frac{1}{47} a^{25} + \frac{19}{47} a^{23} + \frac{14}{47} a^{21} - \frac{12}{47} a^{19} + \frac{6}{47} a^{17} + \frac{16}{47} a^{15} + \frac{9}{47} a^{13} + \frac{6}{47} a^{11} - \frac{4}{47} a^{9} - \frac{18}{47} a^{7} + \frac{10}{47} a^{5} - \frac{18}{47} a^{3} + \frac{18}{47} a$, $\frac{1}{47} a^{26} - \frac{18}{47} a^{22} + \frac{4}{47} a^{20} - \frac{1}{47} a^{18} - \frac{4}{47} a^{16} - \frac{13}{47} a^{14} + \frac{23}{47} a^{12} + \frac{23}{47} a^{10} + \frac{11}{47} a^{8} + \frac{23}{47} a^{6} - \frac{20}{47} a^{4} - \frac{16}{47} a^{2} - \frac{13}{47}$, $\frac{1}{47} a^{27} - \frac{18}{47} a^{23} + \frac{4}{47} a^{21} - \frac{1}{47} a^{19} - \frac{4}{47} a^{17} - \frac{13}{47} a^{15} + \frac{23}{47} a^{13} + \frac{23}{47} a^{11} + \frac{11}{47} a^{9} + \frac{23}{47} a^{7} - \frac{20}{47} a^{5} - \frac{16}{47} a^{3} - \frac{13}{47} a$, $\frac{1}{47} a^{28} + \frac{17}{47} a^{22} + \frac{16}{47} a^{20} + \frac{15}{47} a^{18} + \frac{1}{47} a^{16} - \frac{18}{47} a^{14} - \frac{3}{47} a^{12} - \frac{22}{47} a^{10} - \frac{2}{47} a^{8} - \frac{15}{47} a^{6} + \frac{23}{47} a^{4} - \frac{8}{47} a^{2} - \frac{5}{47}$, $\frac{1}{47} a^{29} + \frac{17}{47} a^{23} + \frac{16}{47} a^{21} + \frac{15}{47} a^{19} + \frac{1}{47} a^{17} - \frac{18}{47} a^{15} - \frac{3}{47} a^{13} - \frac{22}{47} a^{11} - \frac{2}{47} a^{9} - \frac{15}{47} a^{7} + \frac{23}{47} a^{5} - \frac{8}{47} a^{3} - \frac{5}{47} a$, $\frac{1}{47} a^{30} + \frac{22}{47} a^{22} + \frac{12}{47} a^{20} + \frac{17}{47} a^{18} + \frac{21}{47} a^{16} + \frac{7}{47} a^{14} + \frac{13}{47} a^{12} - \frac{10}{47} a^{10} + \frac{6}{47} a^{8} + \frac{10}{47} a^{4} + \frac{19}{47} a^{2} + \frac{23}{47}$, $\frac{1}{47} a^{31} + \frac{22}{47} a^{23} + \frac{12}{47} a^{21} + \frac{17}{47} a^{19} + \frac{21}{47} a^{17} + \frac{7}{47} a^{15} + \frac{13}{47} a^{13} - \frac{10}{47} a^{11} + \frac{6}{47} a^{9} + \frac{10}{47} a^{5} + \frac{19}{47} a^{3} + \frac{23}{47} a$, $\frac{1}{9437887215720177534459648901415421112502535037122562836599} a^{32} + \frac{55557609152963376715994584539988286080305750162613882741}{9437887215720177534459648901415421112502535037122562836599} a^{30} + \frac{92465966130435395876201684673004932886818776589730127721}{9437887215720177534459648901415421112502535037122562836599} a^{28} - \frac{42027633211984960628885734783475497369981750302742683709}{9437887215720177534459648901415421112502535037122562836599} a^{26} + \frac{27033156525732454198857302653179778743101239814602333897}{9437887215720177534459648901415421112502535037122562836599} a^{24} - \frac{809696357795395874918665426289096955879063000515747515050}{9437887215720177534459648901415421112502535037122562836599} a^{22} + \frac{2452205755281258519013504577264205000924746922863923285559}{9437887215720177534459648901415421112502535037122562836599} a^{20} - \frac{2430934062068386546112299107781361617047079566775499105968}{9437887215720177534459648901415421112502535037122562836599} a^{18} + \frac{898659060638724774320703912112700302385502267068082584018}{9437887215720177534459648901415421112502535037122562836599} a^{16} + \frac{1026416290167964887641791808437038869444877446632973480194}{9437887215720177534459648901415421112502535037122562836599} a^{14} - \frac{3738260839932229132739609240694417962620415629098520585161}{9437887215720177534459648901415421112502535037122562836599} a^{12} + \frac{16048353966610410560577089531767510251250909555674175029}{35885502721369496328743912172682209553241578087918489873} a^{10} - \frac{1376039481348883755056360377207481941370859779010147022331}{9437887215720177534459648901415421112502535037122562836599} a^{8} - \frac{2927934930319072559238080849209544224294742631898977463047}{9437887215720177534459648901415421112502535037122562836599} a^{6} - \frac{1946983127026010157120110086019470776782996585224698433298}{9437887215720177534459648901415421112502535037122562836599} a^{4} - \frac{2380576461860352243844087620305736245720310018875908070}{11467663688602888863255952492606830027342083884717573313} a^{2} - \frac{2353285574092495377539882830921654824867879186723976348837}{9437887215720177534459648901415421112502535037122562836599}$, $\frac{1}{9437887215720177534459648901415421112502535037122562836599} a^{33} + \frac{55557609152963376715994584539988286080305750162613882741}{9437887215720177534459648901415421112502535037122562836599} a^{31} + \frac{92465966130435395876201684673004932886818776589730127721}{9437887215720177534459648901415421112502535037122562836599} a^{29} - \frac{42027633211984960628885734783475497369981750302742683709}{9437887215720177534459648901415421112502535037122562836599} a^{27} + \frac{27033156525732454198857302653179778743101239814602333897}{9437887215720177534459648901415421112502535037122562836599} a^{25} - \frac{809696357795395874918665426289096955879063000515747515050}{9437887215720177534459648901415421112502535037122562836599} a^{23} + \frac{2452205755281258519013504577264205000924746922863923285559}{9437887215720177534459648901415421112502535037122562836599} a^{21} - \frac{2430934062068386546112299107781361617047079566775499105968}{9437887215720177534459648901415421112502535037122562836599} a^{19} + \frac{898659060638724774320703912112700302385502267068082584018}{9437887215720177534459648901415421112502535037122562836599} a^{17} + \frac{1026416290167964887641791808437038869444877446632973480194}{9437887215720177534459648901415421112502535037122562836599} a^{15} - \frac{3738260839932229132739609240694417962620415629098520585161}{9437887215720177534459648901415421112502535037122562836599} a^{13} + \frac{16048353966610410560577089531767510251250909555674175029}{35885502721369496328743912172682209553241578087918489873} a^{11} - \frac{1376039481348883755056360377207481941370859779010147022331}{9437887215720177534459648901415421112502535037122562836599} a^{9} - \frac{2927934930319072559238080849209544224294742631898977463047}{9437887215720177534459648901415421112502535037122562836599} a^{7} - \frac{1946983127026010157120110086019470776782996585224698433298}{9437887215720177534459648901415421112502535037122562836599} a^{5} - \frac{2380576461860352243844087620305736245720310018875908070}{11467663688602888863255952492606830027342083884717573313} a^{3} - \frac{2353285574092495377539882830921654824867879186723976348837}{9437887215720177534459648901415421112502535037122562836599} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $33$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6234441083346011000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 34 |
| The 34 conjugacy class representatives for $C_{34}$ |
| Character table for $C_{34}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{103}) \), 17.17.160470643909878751793805444097921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $17^{2}$ | $34$ | $34$ | $17^{2}$ | $17^{2}$ | $17^{2}$ | $34$ | $34$ | $17^{2}$ | $17^{2}$ | $34$ | $17^{2}$ | $17^{2}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{34}$ | $34$ | $34$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 103 | Data not computed | ||||||