Properties

Label 34.34.3964533222...6397.1
Degree $34$
Signature $[34, 0]$
Discriminant $3^{17}\cdot 239^{33}$
Root discriminant $352.38$
Ramified primes $3, 239$
Class number Not computed
Class group Not computed
Galois group $C_{34}$ (as 34T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1837949379337, -5660890413592, -11327609879895, 47963892484362, 12333105586403, -148903684198624, 36562869717986, 234410445722596, -111778159141465, -213069020125008, 131456645867600, 119649933651350, -86651121657409, -43240401935234, 35641711788229, 10360026342075, -9636273648346, -1688690191425, 1765983079148, 191669143499, -223263827012, -15465088187, 19604442024, 899801813, -1191806255, -37620540, 49480426, 1091625, -1365164, -20475, 23771, 219, -235, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^34 - x^33 - 235*x^32 + 219*x^31 + 23771*x^30 - 20475*x^29 - 1365164*x^28 + 1091625*x^27 + 49480426*x^26 - 37620540*x^25 - 1191806255*x^24 + 899801813*x^23 + 19604442024*x^22 - 15465088187*x^21 - 223263827012*x^20 + 191669143499*x^19 + 1765983079148*x^18 - 1688690191425*x^17 - 9636273648346*x^16 + 10360026342075*x^15 + 35641711788229*x^14 - 43240401935234*x^13 - 86651121657409*x^12 + 119649933651350*x^11 + 131456645867600*x^10 - 213069020125008*x^9 - 111778159141465*x^8 + 234410445722596*x^7 + 36562869717986*x^6 - 148903684198624*x^5 + 12333105586403*x^4 + 47963892484362*x^3 - 11327609879895*x^2 - 5660890413592*x + 1837949379337)
 
gp: K = bnfinit(x^34 - x^33 - 235*x^32 + 219*x^31 + 23771*x^30 - 20475*x^29 - 1365164*x^28 + 1091625*x^27 + 49480426*x^26 - 37620540*x^25 - 1191806255*x^24 + 899801813*x^23 + 19604442024*x^22 - 15465088187*x^21 - 223263827012*x^20 + 191669143499*x^19 + 1765983079148*x^18 - 1688690191425*x^17 - 9636273648346*x^16 + 10360026342075*x^15 + 35641711788229*x^14 - 43240401935234*x^13 - 86651121657409*x^12 + 119649933651350*x^11 + 131456645867600*x^10 - 213069020125008*x^9 - 111778159141465*x^8 + 234410445722596*x^7 + 36562869717986*x^6 - 148903684198624*x^5 + 12333105586403*x^4 + 47963892484362*x^3 - 11327609879895*x^2 - 5660890413592*x + 1837949379337, 1)
 

Normalized defining polynomial

\( x^{34} - x^{33} - 235 x^{32} + 219 x^{31} + 23771 x^{30} - 20475 x^{29} - 1365164 x^{28} + 1091625 x^{27} + 49480426 x^{26} - 37620540 x^{25} - 1191806255 x^{24} + 899801813 x^{23} + 19604442024 x^{22} - 15465088187 x^{21} - 223263827012 x^{20} + 191669143499 x^{19} + 1765983079148 x^{18} - 1688690191425 x^{17} - 9636273648346 x^{16} + 10360026342075 x^{15} + 35641711788229 x^{14} - 43240401935234 x^{13} - 86651121657409 x^{12} + 119649933651350 x^{11} + 131456645867600 x^{10} - 213069020125008 x^{9} - 111778159141465 x^{8} + 234410445722596 x^{7} + 36562869717986 x^{6} - 148903684198624 x^{5} + 12333105586403 x^{4} + 47963892484362 x^{3} - 11327609879895 x^{2} - 5660890413592 x + 1837949379337 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $34$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[34, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(396453322217136309958634099219536928970040019010114536180810669542630147463712951536397=3^{17}\cdot 239^{33}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $352.38$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 239$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(717=3\cdot 239\)
Dirichlet character group:    $\lbrace$$\chi_{717}(1,·)$, $\chi_{717}(514,·)$, $\chi_{717}(650,·)$, $\chi_{717}(407,·)$, $\chi_{717}(529,·)$, $\chi_{717}(530,·)$, $\chi_{717}(22,·)$, $\chi_{717}(23,·)$, $\chi_{717}(163,·)$, $\chi_{717}(164,·)$, $\chi_{717}(677,·)$, $\chi_{717}(166,·)$, $\chi_{717}(551,·)$, $\chi_{717}(40,·)$, $\chi_{717}(553,·)$, $\chi_{717}(554,·)$, $\chi_{717}(310,·)$, $\chi_{717}(695,·)$, $\chi_{717}(187,·)$, $\chi_{717}(188,·)$, $\chi_{717}(67,·)$, $\chi_{717}(694,·)$, $\chi_{717}(203,·)$, $\chi_{717}(716,·)$, $\chi_{717}(211,·)$, $\chi_{717}(340,·)$, $\chi_{717}(350,·)$, $\chi_{717}(610,·)$, $\chi_{717}(484,·)$, $\chi_{717}(233,·)$, $\chi_{717}(107,·)$, $\chi_{717}(367,·)$, $\chi_{717}(377,·)$, $\chi_{717}(506,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $\frac{1}{727} a^{31} + \frac{37}{727} a^{30} + \frac{227}{727} a^{29} - \frac{8}{727} a^{28} - \frac{301}{727} a^{27} + \frac{148}{727} a^{26} - \frac{114}{727} a^{25} - \frac{310}{727} a^{24} + \frac{135}{727} a^{23} + \frac{109}{727} a^{22} + \frac{296}{727} a^{21} - \frac{326}{727} a^{20} + \frac{131}{727} a^{19} + \frac{164}{727} a^{18} + \frac{166}{727} a^{17} + \frac{25}{727} a^{16} + \frac{238}{727} a^{15} + \frac{68}{727} a^{14} + \frac{102}{727} a^{13} + \frac{127}{727} a^{12} - \frac{131}{727} a^{11} + \frac{267}{727} a^{10} + \frac{348}{727} a^{9} - \frac{194}{727} a^{8} + \frac{180}{727} a^{7} + \frac{107}{727} a^{6} + \frac{338}{727} a^{5} - \frac{132}{727} a^{4} + \frac{211}{727} a^{3} + \frac{243}{727} a^{2} - \frac{130}{727} a + \frac{238}{727}$, $\frac{1}{205741} a^{32} - \frac{39}{205741} a^{31} - \frac{78920}{205741} a^{30} + \frac{72888}{205741} a^{29} + \frac{65010}{205741} a^{28} - \frac{32228}{205741} a^{27} - \frac{98602}{205741} a^{26} + \frac{90505}{205741} a^{25} - \frac{6112}{205741} a^{24} - \frac{37050}{205741} a^{23} - \frac{63967}{205741} a^{22} + \frac{37519}{205741} a^{21} + \frac{17637}{205741} a^{20} - \frac{97032}{205741} a^{19} + \frac{16782}{205741} a^{18} + \frac{101548}{205741} a^{17} - \frac{75089}{205741} a^{16} + \frac{54680}{205741} a^{15} + \frac{49459}{205741} a^{14} - \frac{1082}{205741} a^{13} - \frac{89753}{205741} a^{12} - \frac{23946}{205741} a^{11} + \frac{44759}{205741} a^{10} - \frac{72443}{205741} a^{9} + \frac{21467}{205741} a^{8} - \frac{49196}{205741} a^{7} + \frac{88897}{205741} a^{6} - \frac{71621}{205741} a^{5} - \frac{34104}{205741} a^{4} + \frac{201}{205741} a^{3} + \frac{14117}{205741} a^{2} + \frac{7937}{205741} a + \frac{101140}{205741}$, $\frac{1}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a^{33} - \frac{6994456430992207173318707754746314741884113808974137876657342881972141648615139359596773530712025234837000549770247610908769644698408558497103351143035987137934427964946021794391762649151465186654797378748}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a^{32} + \frac{494395663600861627078239876735016954787241721337170636912163339989793992544840948306743654570705212825151613772168532638369633260045476583217480794664728347457063292158280155572920116443838872178654854457796}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a^{31} - \frac{2140348079146356964591115480371631140033846873390264633070687591120110430765194091514746708835192268284523648776670910167127582155545772678347742158469461038729044875397137782340803121727107953331761252822739576}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a^{30} + \frac{2304749610278255295847596230049290034451370073903764778365850425185083746642653389817838431328015412141469270135569833034220159355744360058856123239345877253895467350450164576884304687584345895622787078058310332}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a^{29} - \frac{936075720500302926250521173766857683522420118327246175950163340239277442307793332201452163749798902494056239175302434076999972936957046060864909580858494498590155801066445748768361897145845289008972208273072825}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a^{28} - \frac{2506548954064813734090190243724844657413609313740780886732273404546556062717700721736920389977629239935306015562205841358588613275174841427005133109290608082833053042619752346305979645574544568522707867693672512}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a^{27} + \frac{1234459956659185158897740607171285931363926395560499864720379157104296796311798310544193274884111788830487514809069153869391543083773175682518062059704834006695270124122565453207331039232179518733725838155170499}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a^{26} - \frac{1674475424256956055893959388391111499730186339084075925928882274205422830009131349712189353058442001217961412021986452139488321477141899730006368849033656786507404648839651061378244909755574627271385410460271118}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a^{25} + \frac{1024285440189988134714647477602599452549740079283202542109099926143413480379017998675298699984645536704401617143705841396841677593841130650211526447975071836439804427819830569820317616432080037532951362635840531}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a^{24} - \frac{2223891499108313107603650957847756003466538583388463428314085361155591667673998352911577608120848977357297346666148211794836956697446262771944836225207218048930539616157044936893622901870096666386926246929240185}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a^{23} + \frac{2636982546782551480567607256796645029956549529579853224062366760127797312265005324898830819207822151917857354448419458836379613139221499929426752087494258674260992431751854925760530339955365236074391908161423298}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a^{22} - \frac{1750003536586722669102491898929476924085196682675065036369944704718692999351732275379505683580136089610438758718963919272547602162144102227452804421720813786389421950932559393700577672895793886257919337695079010}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a^{21} + \frac{1212575245561488212272328030125191495012944548260500739744890430933406947959647139275085084970006605095451898960341751192058100203587562146524813326514321364548262136078994343057689415021646825577257432604880326}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a^{20} + \frac{2680006448140938339617592066581817051909590381747915358770801607487024460637733719318298830444839877581902503329742353112080440150975672799154665889442821411005517514241265830739401500704848547819941881230725623}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a^{19} - \frac{1974646433586442129117022757590029638612986801267977482771966812297638144936426291818372149294415612876178164816335792337180041784024920827397511575239594499164397401620998194314477309304454191149751536092566077}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a^{18} + \frac{765442928551158662068650817224112268300043380694168563199541823121997573945938965002880514654335920762219991364611925809594915725518776376522384976089279169187849698678011100858729577333522429190711970625505775}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a^{17} - \frac{2804927275622092815034144501005984233067573655679456015205142664735215126077255276516848493328660973286002807389348196750929787444278906836937180454627442060683122112327075092840291359537797029151431908488071510}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a^{16} + \frac{844061275244073456250584547786609715017076287891865194066439524492709027205377977868781412895954880878356199082243601085248081563698862490618965164800146942966807671339260299404832475766758300719768071707154116}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a^{15} + \frac{2209200140488387401805032708647791289839074968706494815735887501799916846204604852219715315087829276381946416783937188993870729978516189059228193137565521067456587859759201741307382939452343129331370705241697103}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a^{14} - \frac{1837752122264091971254712680237997828612617378146888472869821388788741542471135699179736578153739653804012386373964656325890533449681597718070926457917816133322437780696783407438380084939578809574512259813190579}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a^{13} - \frac{278489644512377634434625303889603797470331136400488468422845854580420277867436621700725379697077508199764409489446939510504675839915248538374225890308762034594324035811138469003812368338077548106794935798008454}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a^{12} - \frac{156588791533192465038784776142965177039679197125245129224096297947103755647213393292573693878089283235772605664985712178810683375596831295199596727196574868568162458728476509182978017912025344967047599812336636}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a^{11} - \frac{1410633381151417496720250675444374931074426187059150410662542709674503253483826558679631327495259456915722153515214245837538607045917268359273430909558309122028855892816277116954873904538666504369358230074155443}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a^{10} - \frac{3417198863658141332020087635922282763666464820326376627110966516262934797923542624719813501565827957575585727809821527180846277063125099253200539487471943209019427802468031023916169595107975660825772700398085}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a^{9} - \frac{2459798030433004702569660985500172959810946928750508402912830244651336988603533134191878091951986257377309958757812021541489090890268376176521758053130088378229806294318974727893570607753292941592367768404856420}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a^{8} + \frac{1927204448578896039924290863131847880279433364223256114654640657917653170607324056674705352784115956776450419176968408003958390051210890785277143330878077476850558099249278722183472378325119957334317563650235976}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a^{7} + \frac{2491522496976509767072375994067309612180162658685664023220613591648307206344704707923649535885323984495383025516021963138062962696040075322053786512484228901932305694120225370532428712859859477699104118928193852}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a^{6} + \frac{2132089789033296881040047013920054378722455373810341520118847692850226732581165658370606683660432688210680441299666862462700215313810053566795839007191811156942868697321187711923966838968246347908790939361989173}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a^{5} + \frac{59416602741984298364483490243703518525564838969775471507966623096678599192360647286829927022172547826240125723468119591939242953753117558102177444400209762651128477036448382666312797096789981984888549808340675}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a^{4} + \frac{533409061881460489993915380366574445197377745018985605312135731186083095314632266117965867972077924073455659338217663432753395751714666048712375262049824840090165683343849404817147687491170843809570587211692539}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a^{3} - \frac{920703452362502795478586964667558639006278077057123811668867829059966804648737896337582765187791866017710556716868425425967122977445229856224889149470382102818960950634024501962701590972482858763220710634705697}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a^{2} - \frac{2224795072705367007563854603102243868077484593334666046314621707677128577393934825973518484069986131934053687503367430878428820474937886655842723946889894260339610153792602953308398675532015524696036843427064933}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407} a + \frac{1409752233413413953362958144424984776837478796247005971725552338978229508522185233053006902080888172500488772899388626989742334518308855151710671259356283441238024935359582735663660722216193385270647952271926489}{5787451347740578780300793238242268614363939992941898158047186331242953198130030624993425933828070562712791292022169967097432599258816106530097077580096149139405293018942024693669336304636571327467133079626240407}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Not computed

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $33$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Not computed
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  Not computed
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{34}$ (as 34T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 34
The 34 conjugacy class representatives for $C_{34}$
Character table for $C_{34}$ is not computed

Intermediate fields

\(\Q(\sqrt{717}) \), 17.17.113335617496346216833223278514633468161.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $34$ R $34$ $34$ $34$ $34$ $34$ $34$ $17^{2}$ $34$ $17^{2}$ $34$ $17^{2}$ $34$ $17^{2}$ $17^{2}$ $17^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
239Data not computed