Normalized defining polynomial
\( x^{34} - x^{33} - 66 x^{32} + 61 x^{31} + 1891 x^{30} - 1607 x^{29} - 31023 x^{28} + 24095 x^{27} + 323844 x^{26} - 228291 x^{25} - 2262360 x^{24} + 1435905 x^{23} + 10839684 x^{22} - 6136823 x^{21} - 35945371 x^{20} + 17958849 x^{19} + 82324817 x^{18} - 35828109 x^{17} - 128721615 x^{16} + 47931532 x^{15} + 134553261 x^{14} - 41728477 x^{13} - 91025976 x^{12} + 22664245 x^{11} + 37938129 x^{10} - 7334043 x^{9} - 9042178 x^{8} + 1347387 x^{7} + 1118049 x^{6} - 116296 x^{5} - 61867 x^{4} + 1806 x^{3} + 1328 x^{2} + 77 x + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $\frac{1}{37} a^{23} + \frac{3}{37} a^{22} + \frac{16}{37} a^{21} + \frac{8}{37} a^{20} + \frac{16}{37} a^{19} - \frac{9}{37} a^{18} + \frac{3}{37} a^{17} - \frac{11}{37} a^{16} - \frac{8}{37} a^{15} - \frac{8}{37} a^{14} + \frac{15}{37} a^{13} + \frac{8}{37} a^{12} + \frac{11}{37} a^{11} + \frac{15}{37} a^{10} + \frac{1}{37} a^{9} + \frac{5}{37} a^{8} + \frac{16}{37} a^{7} + \frac{16}{37} a^{5} + \frac{16}{37} a^{4} - \frac{9}{37} a^{3} - \frac{11}{37} a^{2} + \frac{13}{37} a + \frac{1}{37}$, $\frac{1}{37} a^{24} + \frac{7}{37} a^{22} - \frac{3}{37} a^{21} - \frac{8}{37} a^{20} + \frac{17}{37} a^{19} - \frac{7}{37} a^{18} + \frac{17}{37} a^{17} - \frac{12}{37} a^{16} + \frac{16}{37} a^{15} + \frac{2}{37} a^{14} - \frac{13}{37} a^{12} - \frac{18}{37} a^{11} - \frac{7}{37} a^{10} + \frac{2}{37} a^{9} + \frac{1}{37} a^{8} - \frac{11}{37} a^{7} + \frac{16}{37} a^{6} + \frac{5}{37} a^{5} + \frac{17}{37} a^{4} + \frac{16}{37} a^{3} + \frac{9}{37} a^{2} - \frac{1}{37} a - \frac{3}{37}$, $\frac{1}{37} a^{25} + \frac{13}{37} a^{22} - \frac{9}{37} a^{21} - \frac{2}{37} a^{20} - \frac{8}{37} a^{19} + \frac{6}{37} a^{18} + \frac{4}{37} a^{17} - \frac{18}{37} a^{16} - \frac{16}{37} a^{15} - \frac{18}{37} a^{14} - \frac{7}{37} a^{13} - \frac{10}{37} a^{11} + \frac{8}{37} a^{10} - \frac{6}{37} a^{9} - \frac{9}{37} a^{8} + \frac{15}{37} a^{7} + \frac{5}{37} a^{6} + \frac{16}{37} a^{5} + \frac{15}{37} a^{4} - \frac{2}{37} a^{3} + \frac{2}{37} a^{2} + \frac{17}{37} a - \frac{7}{37}$, $\frac{1}{37} a^{26} - \frac{11}{37} a^{22} + \frac{12}{37} a^{21} - \frac{1}{37} a^{20} - \frac{17}{37} a^{19} + \frac{10}{37} a^{18} + \frac{17}{37} a^{17} + \frac{16}{37} a^{16} + \frac{12}{37} a^{15} - \frac{14}{37} a^{14} - \frac{10}{37} a^{13} - \frac{3}{37} a^{12} + \frac{13}{37} a^{11} - \frac{16}{37} a^{10} + \frac{15}{37} a^{9} - \frac{13}{37} a^{8} - \frac{18}{37} a^{7} + \frac{16}{37} a^{6} - \frac{8}{37} a^{5} + \frac{12}{37} a^{4} + \frac{8}{37} a^{3} + \frac{12}{37} a^{2} + \frac{9}{37} a - \frac{13}{37}$, $\frac{1}{37} a^{27} + \frac{8}{37} a^{22} - \frac{10}{37} a^{21} - \frac{3}{37} a^{20} + \frac{1}{37} a^{19} - \frac{8}{37} a^{18} + \frac{12}{37} a^{17} + \frac{2}{37} a^{16} + \frac{9}{37} a^{15} + \frac{13}{37} a^{14} + \frac{14}{37} a^{13} - \frac{10}{37} a^{12} - \frac{6}{37} a^{11} - \frac{5}{37} a^{10} - \frac{2}{37} a^{9} + \frac{7}{37} a^{7} - \frac{8}{37} a^{6} + \frac{3}{37} a^{5} - \frac{1}{37} a^{4} - \frac{13}{37} a^{3} - \frac{1}{37} a^{2} - \frac{18}{37} a + \frac{11}{37}$, $\frac{1}{37} a^{28} + \frac{3}{37} a^{22} + \frac{17}{37} a^{21} + \frac{11}{37} a^{20} + \frac{12}{37} a^{19} + \frac{10}{37} a^{18} + \frac{15}{37} a^{17} - \frac{14}{37} a^{16} + \frac{3}{37} a^{15} + \frac{4}{37} a^{14} + \frac{18}{37} a^{13} + \frac{4}{37} a^{12} + \frac{18}{37} a^{11} - \frac{11}{37} a^{10} - \frac{8}{37} a^{9} + \frac{4}{37} a^{8} + \frac{12}{37} a^{7} + \frac{3}{37} a^{6} - \frac{18}{37} a^{5} + \frac{7}{37} a^{4} - \frac{3}{37} a^{3} - \frac{4}{37} a^{2} + \frac{18}{37} a - \frac{8}{37}$, $\frac{1}{37} a^{29} + \frac{8}{37} a^{22} - \frac{12}{37} a^{20} - \frac{1}{37} a^{19} + \frac{5}{37} a^{18} + \frac{14}{37} a^{17} - \frac{1}{37} a^{16} - \frac{9}{37} a^{15} + \frac{5}{37} a^{14} - \frac{4}{37} a^{13} - \frac{6}{37} a^{12} - \frac{7}{37} a^{11} - \frac{16}{37} a^{10} + \frac{1}{37} a^{9} - \frac{3}{37} a^{8} - \frac{8}{37} a^{7} - \frac{18}{37} a^{6} - \frac{4}{37} a^{5} - \frac{14}{37} a^{4} - \frac{14}{37} a^{3} + \frac{14}{37} a^{2} - \frac{10}{37} a - \frac{3}{37}$, $\frac{1}{37} a^{30} + \frac{13}{37} a^{22} + \frac{8}{37} a^{21} + \frac{9}{37} a^{20} - \frac{12}{37} a^{19} + \frac{12}{37} a^{18} + \frac{12}{37} a^{17} + \frac{5}{37} a^{16} - \frac{5}{37} a^{15} - \frac{14}{37} a^{14} - \frac{15}{37} a^{13} + \frac{3}{37} a^{12} + \frac{7}{37} a^{11} - \frac{8}{37} a^{10} - \frac{11}{37} a^{9} - \frac{11}{37} a^{8} + \frac{2}{37} a^{7} - \frac{4}{37} a^{6} + \frac{6}{37} a^{5} + \frac{6}{37} a^{4} + \frac{12}{37} a^{3} + \frac{4}{37} a^{2} + \frac{4}{37} a - \frac{8}{37}$, $\frac{1}{59459} a^{31} - \frac{70}{59459} a^{30} - \frac{390}{59459} a^{29} + \frac{121}{59459} a^{28} - \frac{422}{59459} a^{27} + \frac{463}{59459} a^{26} + \frac{699}{59459} a^{25} + \frac{178}{59459} a^{24} + \frac{336}{59459} a^{23} + \frac{15158}{59459} a^{22} - \frac{26154}{59459} a^{21} - \frac{26071}{59459} a^{20} - \frac{610}{1607} a^{19} - \frac{20864}{59459} a^{18} + \frac{2232}{59459} a^{17} + \frac{21414}{59459} a^{16} + \frac{13103}{59459} a^{15} + \frac{23448}{59459} a^{14} + \frac{2937}{59459} a^{13} - \frac{6377}{59459} a^{12} + \frac{20750}{59459} a^{11} - \frac{9778}{59459} a^{10} - \frac{14862}{59459} a^{9} + \frac{1381}{59459} a^{8} + \frac{3949}{59459} a^{7} + \frac{1005}{59459} a^{6} - \frac{28868}{59459} a^{5} + \frac{12574}{59459} a^{4} + \frac{27830}{59459} a^{3} - \frac{24512}{59459} a^{2} - \frac{2766}{59459} a - \frac{15817}{59459}$, $\frac{1}{684194713} a^{32} - \frac{5472}{684194713} a^{31} - \frac{903029}{684194713} a^{30} - \frac{4104154}{684194713} a^{29} + \frac{6190149}{684194713} a^{28} - \frac{5592586}{684194713} a^{27} - \frac{1369099}{684194713} a^{26} + \frac{7020006}{684194713} a^{25} + \frac{7599269}{684194713} a^{24} + \frac{5429}{499777} a^{23} - \frac{174839266}{684194713} a^{22} + \frac{204533462}{684194713} a^{21} + \frac{119542720}{684194713} a^{20} + \frac{19436742}{684194713} a^{19} - \frac{291256493}{684194713} a^{18} - \frac{129353278}{684194713} a^{17} + \frac{246142690}{684194713} a^{16} + \frac{168632618}{684194713} a^{15} - \frac{182517658}{684194713} a^{14} + \frac{164409244}{684194713} a^{13} + \frac{149287847}{684194713} a^{12} - \frac{308081356}{684194713} a^{11} + \frac{261320572}{684194713} a^{10} + \frac{330290109}{684194713} a^{9} + \frac{272513720}{684194713} a^{8} - \frac{223985442}{684194713} a^{7} - \frac{162914952}{684194713} a^{6} - \frac{1639373}{684194713} a^{5} + \frac{29856892}{684194713} a^{4} + \frac{136415013}{684194713} a^{3} + \frac{11032741}{684194713} a^{2} - \frac{49461554}{684194713} a - \frac{105336392}{684194713}$, $\frac{1}{568895401910821043946802347535088660794754333172608863447039} a^{33} - \frac{245575892804673345549971097902419659227777729114260}{568895401910821043946802347535088660794754333172608863447039} a^{32} + \frac{4682131793057490220457726478541516858815353805476451681}{568895401910821043946802347535088660794754333172608863447039} a^{31} - \frac{2457722046177397971832768756453751568010255814222974221357}{568895401910821043946802347535088660794754333172608863447039} a^{30} + \frac{6393091983066365565837977418223555542854810248750062882943}{568895401910821043946802347535088660794754333172608863447039} a^{29} - \frac{1607372636787310537994634033206699609011707388184721574217}{568895401910821043946802347535088660794754333172608863447039} a^{28} + \frac{4510008457881128255281042636774720577835357260517315030055}{568895401910821043946802347535088660794754333172608863447039} a^{27} + \frac{5329775190620889837305133571130149103926580405663823061552}{568895401910821043946802347535088660794754333172608863447039} a^{26} - \frac{6410744707247966824008022264235337072000680346898174159050}{568895401910821043946802347535088660794754333172608863447039} a^{25} - \frac{2349280323536325201500979991199417365602726911131981686368}{568895401910821043946802347535088660794754333172608863447039} a^{24} + \frac{3070503157088406560557008034860654648820292889577128785709}{568895401910821043946802347535088660794754333172608863447039} a^{23} + \frac{278794181719503861228017628790942344132828888869309620282956}{568895401910821043946802347535088660794754333172608863447039} a^{22} - \frac{189817671745646564288761185151861884246451278346839161920928}{568895401910821043946802347535088660794754333172608863447039} a^{21} + \frac{270001094171664851773762472355663718358074558513931335448200}{568895401910821043946802347535088660794754333172608863447039} a^{20} + \frac{234950344227564608831077951950166881189067923891953202771384}{568895401910821043946802347535088660794754333172608863447039} a^{19} - \frac{273485958652776559589428794819213599896559440007609897541650}{568895401910821043946802347535088660794754333172608863447039} a^{18} + \frac{98734486468445713022026750599269955646891281151666647298949}{568895401910821043946802347535088660794754333172608863447039} a^{17} + \frac{100828605482647849981690286585218612452024174725262073025129}{568895401910821043946802347535088660794754333172608863447039} a^{16} + \frac{33935042555079951459622248195682930463114915343469052598673}{568895401910821043946802347535088660794754333172608863447039} a^{15} + \frac{4559525880707912673119062298255573522932301096503460532038}{13875497607581001071873227988660699043774495931039240571879} a^{14} + \frac{193258088530835969457363971311237487655944832686172683551483}{568895401910821043946802347535088660794754333172608863447039} a^{13} + \frac{191154695144751441339710465722249213078208416848878757381694}{568895401910821043946802347535088660794754333172608863447039} a^{12} + \frac{222306564778058121493926175688649910518861557198813397891460}{568895401910821043946802347535088660794754333172608863447039} a^{11} + \frac{4363782130557780773604424544850696288539071476776069069274}{15375551402995163349913576960407801643101468464124563876947} a^{10} + \frac{128106582017588951374960642952817219460629248179549810520936}{568895401910821043946802347535088660794754333172608863447039} a^{9} + \frac{69518105838709229786771411437351351437715472770785481006927}{568895401910821043946802347535088660794754333172608863447039} a^{8} + \frac{170498011439833663916785381863143010759044362871558999043473}{568895401910821043946802347535088660794754333172608863447039} a^{7} + \frac{30477898004417354417802163298980952260694208870122946149066}{568895401910821043946802347535088660794754333172608863447039} a^{6} - \frac{4636899991316096742617910882870802511978056567308450316113}{15375551402995163349913576960407801643101468464124563876947} a^{5} + \frac{282795230272027074988750850213402802866015851383256281916532}{568895401910821043946802347535088660794754333172608863447039} a^{4} - \frac{109116413978394963619692461413987567366615414752149151890713}{568895401910821043946802347535088660794754333172608863447039} a^{3} - \frac{33097858004998666753840755806862947860301508711143455131159}{568895401910821043946802347535088660794754333172608863447039} a^{2} - \frac{203956949945124666425178053930294990178995274986974238477434}{568895401910821043946802347535088660794754333172608863447039} a - \frac{107478533662378531994906900377446515805066933737389615286742}{568895401910821043946802347535088660794754333172608863447039}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $33$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5641198150779374000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 34 |
| The 34 conjugacy class representatives for $C_{34}$ |
| Character table for $C_{34}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{137}) \), 17.17.15400296222263289476715621650663041.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $17^{2}$ | $34$ | $34$ | $17^{2}$ | $17^{2}$ | $34$ | $17^{2}$ | $17^{2}$ | $34$ | $34$ | $34$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{34}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{17}$ | $34$ | $34$ | $34$ | $17^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 137 | Data not computed | ||||||