/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^34 - 2*x + 2, 34, 115, [0, 17], -98770665619830158849872633708973799718942072856313660880977920, [2, 5, 4463, 4597, 1786284823, 13682879113045277, 2293023653476192171], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9, a^10, a^11, a^12, a^13, a^14, a^15, a^16, a^17, a^18, a^19, a^20, a^21, a^22, a^23, a^24, a^25, a^26, a^27, a^28, a^29, a^30, a^31, a^32, a^33], 0, 1, [], 1, [ a - 1 , a^(33) + a^(32) + a^(31) + a^(30) + a^(29) + a^(28) + a^(27) + a^(26) + a^(25) + a^(24) + a^(23) - a^(12) + a - 1 , a^(33) + a^(32) + a^(31) + a^(30) - a^(28) - a^(27) - a^(26) - a^(25) + a^(23) + a^(22) + a^(21) + a^(20) - a^(18) - a^(17) - a^(16) - a^(15) + a^(13) + a^(12) + a^(11) + a^(10) - a^(8) - a^(7) - a^(6) - a^(5) + a^(3) + a^(2) + a - 1 , a^(28) - a^(27) + 2*a^(26) + a^(23) - a^(18) - a^(16) + a^(15) - 2*a^(14) + a^(13) - a^(11) + a^(10) - a^(7) + 2*a^(6) - 2*a^(5) + a^(4) - a + 1 , a^(30) + 2*a^(29) + a^(25) + 2*a^(24) - a^(23) - a^(22) - a^(21) + 2*a^(19) - a^(18) - a^(17) - a^(16) - a^(15) + a^(14) - a^(13) - a^(10) + a^(9) - a^(8) + a^(7) + a^(6) - 2*a^(5) + a^(4) + 2*a^(2) + 2*a - 3 , a^(32) + a^(29) + a^(26) + a^(23) - a^(22) + a^(20) + a^(18) + a^(17) - a^(16) + 2*a^(14) + a^(11) - a^(10) + 2*a^(8) - a^(7) + a^(5) - 2*a^(4) + a^(3) + a^(2) - a + 1 , a^(33) + a^(31) + a^(29) - a^(28) + a^(27) + a^(25) - a^(21) - 2*a^(19) + a^(18) - a^(17) + a^(16) - 2*a^(15) + a^(14) - a^(13) - a^(12) - a^(10) + 2*a^(9) - 2*a^(8) + 2*a^(7) - 2*a^(6) + 2*a^(5) - a^(4) + a^(3) + 2*a - 1 , 2*a^(33) - 3*a^(32) - 4*a^(31) + 5*a^(29) + 7*a^(28) + 4*a^(27) - 2*a^(26) - 5*a^(25) - 3*a^(24) + 3*a^(23) + 7*a^(22) + 5*a^(21) - 6*a^(19) - 6*a^(18) + 6*a^(16) + 7*a^(15) + 2*a^(14) - 5*a^(13) - 8*a^(12) - 3*a^(11) + 5*a^(10) + 8*a^(9) + 5*a^(8) - 2*a^(7) - 9*a^(6) - 6*a^(5) + 2*a^(4) + 9*a^(3) + 8*a^(2) - 11 , 4*a^(33) + 5*a^(32) + 2*a^(31) - a^(30) - a^(29) - 2*a^(27) - 6*a^(26) - 6*a^(25) - 2*a^(24) + 2*a^(23) + a^(22) + 2*a^(20) + 6*a^(19) + 6*a^(18) + a^(17) - 2*a^(16) - a^(15) + a^(14) - 2*a^(13) - 7*a^(12) - 6*a^(11) + 4*a^(9) + a^(8) - 2*a^(7) + a^(6) + 5*a^(5) + 4*a^(4) - 3*a^(3) - 3*a^(2) + 2*a - 1 , 2*a^(33) + 2*a^(32) + 3*a^(31) + 2*a^(30) + a^(29) + a^(28) - a^(25) - 2*a^(24) - 3*a^(23) - 2*a^(22) - 2*a^(21) - a^(20) - a^(18) + a^(17) + a^(16) + a^(15) + 2*a^(14) + a^(12) - a^(9) - a^(8) - a^(7) + a^(5) + a^(3) + a - 1 , a^(33) + a^(32) - 2*a^(30) - 2*a^(29) + a^(28) + a^(27) + a^(26) + a^(25) + a^(24) - 2*a^(23) - 3*a^(22) - a^(21) + a^(18) + 3*a^(17) - a^(16) - 3*a^(15) - 2*a^(14) - a^(12) + 4*a^(10) + 2*a^(9) - a^(8) - 3*a^(7) + a^(6) - 3*a^(5) + 2*a^(3) + 5*a^(2) - a - 3 , 19*a^(33) + 17*a^(32) + 16*a^(31) + 15*a^(30) + 13*a^(29) + 12*a^(28) + 12*a^(27) + 9*a^(26) + 8*a^(25) + 8*a^(24) + 6*a^(23) + 5*a^(22) + 5*a^(21) + 4*a^(20) + 3*a^(19) + 2*a^(18) + a^(17) + a^(16) - a^(14) - 2*a^(11) - 2*a^(10) - a^(9) - 3*a^(8) - 4*a^(7) - a^(6) - 3*a^(5) - 3*a^(4) - 2*a^(3) - 3*a^(2) - 3*a - 41 , a^(32) + a^(30) - a^(29) - a^(27) + 2*a^(26) + a^(25) + 2*a^(24) - a^(23) - a^(22) - 2*a^(21) + a^(18) - a^(12) - a^(11) - a^(10) + a^(9) + a^(7) - 2*a^(6) - a^(4) + 2*a^(3) - a^(2) + a - 3 , 2*a^(33) + a^(30) - 3*a^(29) - 2*a^(27) - 2*a^(26) + 3*a^(25) - a^(24) + 4*a^(23) + a^(22) + 2*a^(20) - 4*a^(19) - 3*a^(16) + 4*a^(15) - 3*a^(14) + 3*a^(13) - 3*a^(11) + 4*a^(10) - 3*a^(9) + a^(8) + 2*a^(7) - 4*a^(6) + 5*a^(5) - 5*a^(4) + a^(3) + 3*a^(2) - 5*a + 3 , 12*a^(33) + 8*a^(32) + 3*a^(31) - 2*a^(30) - 11*a^(29) - 10*a^(28) - 12*a^(27) - 3*a^(26) + 2*a^(25) + 8*a^(24) + 14*a^(23) + 9*a^(22) + 9*a^(21) - 3*a^(20) - 6*a^(19) - 12*a^(18) - 13*a^(17) - 4*a^(16) - 3*a^(15) + 10*a^(14) + 9*a^(13) + 14*a^(12) + 9*a^(11) - 2*a^(10) - 3*a^(9) - 16*a^(8) - 9*a^(7) - 13*a^(6) - 2*a^(5) + 7*a^(4) + 7*a^(3) + 19*a^(2) + 5*a - 15 , a^(33) + 2*a^(32) - a^(29) - 2*a^(28) - a^(25) + 2*a^(23) + a^(21) - a^(20) - 2*a^(19) - a^(18) - 3*a^(16) + a^(14) + 2*a^(12) - 2*a^(10) - 3*a^(7) - a^(6) - a^(4) + 3*a^(3) + a^(2) - 2*a - 1 ], 659225846999345700, []]