Normalized defining polynomial
\( x^{34} - 2x + 2 \)
Invariants
Degree: | $34$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 17]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(-98770665619830158849872633708973799718942072856313660880977920\)
\(\medspace = -\,2^{34}\cdot 5\cdot 4463\cdot 4597\cdot 1786284823\cdot 13682879113045277\cdot 2293023653476192171\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(66.58\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(2\), \(5\), \(4463\), \(4597\), \(1786284823\), \(13682879113045277\), \(2293023653476192171\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | $\Q(\sqrt{-57492\!\cdots\!04255}$) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $16$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$a-1$, $a^{33}+a^{32}+a^{31}+a^{30}+a^{29}+a^{28}+a^{27}+a^{26}+a^{25}+a^{24}+a^{23}-a^{12}+a-1$, $a^{33}+a^{32}+a^{31}+a^{30}-a^{28}-a^{27}-a^{26}-a^{25}+a^{23}+a^{22}+a^{21}+a^{20}-a^{18}-a^{17}-a^{16}-a^{15}+a^{13}+a^{12}+a^{11}+a^{10}-a^{8}-a^{7}-a^{6}-a^{5}+a^{3}+a^{2}+a-1$, $a^{28}-a^{27}+2a^{26}+a^{23}-a^{18}-a^{16}+a^{15}-2a^{14}+a^{13}-a^{11}+a^{10}-a^{7}+2a^{6}-2a^{5}+a^{4}-a+1$, $a^{30}+2a^{29}+a^{25}+2a^{24}-a^{23}-a^{22}-a^{21}+2a^{19}-a^{18}-a^{17}-a^{16}-a^{15}+a^{14}-a^{13}-a^{10}+a^{9}-a^{8}+a^{7}+a^{6}-2a^{5}+a^{4}+2a^{2}+2a-3$, $a^{32}+a^{29}+a^{26}+a^{23}-a^{22}+a^{20}+a^{18}+a^{17}-a^{16}+2a^{14}+a^{11}-a^{10}+2a^{8}-a^{7}+a^{5}-2a^{4}+a^{3}+a^{2}-a+1$, $a^{33}+a^{31}+a^{29}-a^{28}+a^{27}+a^{25}-a^{21}-2a^{19}+a^{18}-a^{17}+a^{16}-2a^{15}+a^{14}-a^{13}-a^{12}-a^{10}+2a^{9}-2a^{8}+2a^{7}-2a^{6}+2a^{5}-a^{4}+a^{3}+2a-1$, $2a^{33}-3a^{32}-4a^{31}+5a^{29}+7a^{28}+4a^{27}-2a^{26}-5a^{25}-3a^{24}+3a^{23}+7a^{22}+5a^{21}-6a^{19}-6a^{18}+6a^{16}+7a^{15}+2a^{14}-5a^{13}-8a^{12}-3a^{11}+5a^{10}+8a^{9}+5a^{8}-2a^{7}-9a^{6}-6a^{5}+2a^{4}+9a^{3}+8a^{2}-11$, $4a^{33}+5a^{32}+2a^{31}-a^{30}-a^{29}-2a^{27}-6a^{26}-6a^{25}-2a^{24}+2a^{23}+a^{22}+2a^{20}+6a^{19}+6a^{18}+a^{17}-2a^{16}-a^{15}+a^{14}-2a^{13}-7a^{12}-6a^{11}+4a^{9}+a^{8}-2a^{7}+a^{6}+5a^{5}+4a^{4}-3a^{3}-3a^{2}+2a-1$, $2a^{33}+2a^{32}+3a^{31}+2a^{30}+a^{29}+a^{28}-a^{25}-2a^{24}-3a^{23}-2a^{22}-2a^{21}-a^{20}-a^{18}+a^{17}+a^{16}+a^{15}+2a^{14}+a^{12}-a^{9}-a^{8}-a^{7}+a^{5}+a^{3}+a-1$, $a^{33}+a^{32}-2a^{30}-2a^{29}+a^{28}+a^{27}+a^{26}+a^{25}+a^{24}-2a^{23}-3a^{22}-a^{21}+a^{18}+3a^{17}-a^{16}-3a^{15}-2a^{14}-a^{12}+4a^{10}+2a^{9}-a^{8}-3a^{7}+a^{6}-3a^{5}+2a^{3}+5a^{2}-a-3$, $19a^{33}+17a^{32}+16a^{31}+15a^{30}+13a^{29}+12a^{28}+12a^{27}+9a^{26}+8a^{25}+8a^{24}+6a^{23}+5a^{22}+5a^{21}+4a^{20}+3a^{19}+2a^{18}+a^{17}+a^{16}-a^{14}-2a^{11}-2a^{10}-a^{9}-3a^{8}-4a^{7}-a^{6}-3a^{5}-3a^{4}-2a^{3}-3a^{2}-3a-41$, $a^{32}+a^{30}-a^{29}-a^{27}+2a^{26}+a^{25}+2a^{24}-a^{23}-a^{22}-2a^{21}+a^{18}-a^{12}-a^{11}-a^{10}+a^{9}+a^{7}-2a^{6}-a^{4}+2a^{3}-a^{2}+a-3$, $2a^{33}+a^{30}-3a^{29}-2a^{27}-2a^{26}+3a^{25}-a^{24}+4a^{23}+a^{22}+2a^{20}-4a^{19}-3a^{16}+4a^{15}-3a^{14}+3a^{13}-3a^{11}+4a^{10}-3a^{9}+a^{8}+2a^{7}-4a^{6}+5a^{5}-5a^{4}+a^{3}+3a^{2}-5a+3$, $12a^{33}+8a^{32}+3a^{31}-2a^{30}-11a^{29}-10a^{28}-12a^{27}-3a^{26}+2a^{25}+8a^{24}+14a^{23}+9a^{22}+9a^{21}-3a^{20}-6a^{19}-12a^{18}-13a^{17}-4a^{16}-3a^{15}+10a^{14}+9a^{13}+14a^{12}+9a^{11}-2a^{10}-3a^{9}-16a^{8}-9a^{7}-13a^{6}-2a^{5}+7a^{4}+7a^{3}+19a^{2}+5a-15$, $a^{33}+2a^{32}-a^{29}-2a^{28}-a^{25}+2a^{23}+a^{21}-a^{20}-2a^{19}-a^{18}-3a^{16}+a^{14}+2a^{12}-2a^{10}-3a^{7}-a^{6}-a^{4}+3a^{3}+a^{2}-2a-1$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 659225846999345700 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{17}\cdot 659225846999345700 \cdot 1}{2\cdot\sqrt{98770665619830158849872633708973799718942072856313660880977920}}\cr\approx \mathstrut & 1.22955512131224 \end{aligned}\] (assuming GRH)
Galois group
A non-solvable group of order 295232799039604140847618609643520000000 |
The 12310 conjugacy class representatives for $S_{34}$ are not computed |
Character table for $S_{34}$ is not computed |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | $17{,}\,{\href{/padicField/3.12.0.1}{12} }{,}\,{\href{/padicField/3.3.0.1}{3} }{,}\,{\href{/padicField/3.2.0.1}{2} }$ | R | $29{,}\,{\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | $27{,}\,{\href{/padicField/11.5.0.1}{5} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | $34$ | $17{,}\,{\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.5.0.1}{5} }{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | $22{,}\,{\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.5.0.1}{5} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | $21{,}\,{\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }$ | $15{,}\,{\href{/padicField/29.11.0.1}{11} }{,}\,{\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | $21{,}\,{\href{/padicField/31.10.0.1}{10} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | $33{,}\,{\href{/padicField/37.1.0.1}{1} }$ | $28{,}\,{\href{/padicField/41.6.0.1}{6} }$ | ${\href{/padicField/43.10.0.1}{10} }{,}\,{\href{/padicField/43.7.0.1}{7} }{,}\,{\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.3.0.1}{3} }$ | $29{,}\,{\href{/padicField/47.1.0.1}{1} }^{5}$ | $25{,}\,{\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.3.0.1}{3} }$ | $16{,}\,{\href{/padicField/59.5.0.1}{5} }^{3}{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| Deg $34$ | $34$ | $1$ | $34$ | |||
\(5\)
| $\Q_{5}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.13.0.1 | $x^{13} + 4 x^{2} + 3 x + 3$ | $1$ | $13$ | $0$ | $C_{13}$ | $[\ ]^{13}$ | |
5.18.0.1 | $x^{18} + x^{12} + x^{11} + x^{10} + x^{9} + 2 x^{8} + 2 x^{6} + x^{5} + 2 x^{3} + 2 x^{2} + 2$ | $1$ | $18$ | $0$ | $C_{18}$ | $[\ ]^{18}$ | |
\(4463\)
| $\Q_{4463}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{4463}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{4463}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{4463}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | ||
Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | ||
Deg $7$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | ||
Deg $10$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | ||
\(4597\)
| $\Q_{4597}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | ||
Deg $28$ | $1$ | $28$ | $0$ | $C_{28}$ | $[\ ]^{28}$ | ||
\(1786284823\)
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | ||
Deg $8$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | ||
Deg $19$ | $1$ | $19$ | $0$ | $C_{19}$ | $[\ ]^{19}$ | ||
\(13682879113045277\)
| $\Q_{13682879113045277}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | ||
Deg $12$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | ||
Deg $14$ | $1$ | $14$ | $0$ | $C_{14}$ | $[\ ]^{14}$ | ||
\(2293023653476192171\)
| $\Q_{2293023653476192171}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $31$ | $1$ | $31$ | $0$ | $C_{31}$ | $[\ ]^{31}$ |