Normalized defining polynomial
\( x^{34} + 206 x^{32} + 18128 x^{30} + 897336 x^{28} + 27707824 x^{26} + 559987104 x^{24} + 7567886272 x^{22} + 68661098624 x^{20} + 413889346304 x^{18} + 1619147712512 x^{16} + 3970332595200 x^{14} + 5860787093504 x^{12} + 5032636559360 x^{10} + 2433092222976 x^{8} + 628425801728 x^{6} + 79348695040 x^{4} + 3854368768 x^{2} + 13500416 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{128} a^{15}$, $\frac{1}{256} a^{16}$, $\frac{1}{256} a^{17}$, $\frac{1}{512} a^{18}$, $\frac{1}{512} a^{19}$, $\frac{1}{1024} a^{20}$, $\frac{1}{1024} a^{21}$, $\frac{1}{2048} a^{22}$, $\frac{1}{2048} a^{23}$, $\frac{1}{192512} a^{24} - \frac{19}{96256} a^{22} + \frac{7}{24064} a^{20} + \frac{3}{6016} a^{18} + \frac{3}{6016} a^{16} - \frac{1}{376} a^{14} + \frac{9}{3008} a^{12} - \frac{3}{752} a^{10} - \frac{1}{188} a^{8} + \frac{9}{188} a^{6} + \frac{5}{94} a^{4} + \frac{9}{47} a^{2} + \frac{18}{47}$, $\frac{1}{192512} a^{25} - \frac{19}{96256} a^{23} + \frac{7}{24064} a^{21} + \frac{3}{6016} a^{19} + \frac{3}{6016} a^{17} - \frac{1}{376} a^{15} + \frac{9}{3008} a^{13} - \frac{3}{752} a^{11} - \frac{1}{188} a^{9} + \frac{9}{188} a^{7} + \frac{5}{94} a^{5} + \frac{9}{47} a^{3} + \frac{18}{47} a$, $\frac{1}{385024} a^{26} - \frac{9}{48128} a^{22} - \frac{1}{12032} a^{20} - \frac{1}{24064} a^{18} + \frac{1}{3008} a^{16} - \frac{13}{6016} a^{14} - \frac{23}{3008} a^{12} + \frac{23}{1504} a^{10} - \frac{11}{752} a^{8} + \frac{23}{376} a^{6} + \frac{5}{47} a^{4} - \frac{8}{47} a^{2} + \frac{13}{47}$, $\frac{1}{385024} a^{27} - \frac{9}{48128} a^{23} - \frac{1}{12032} a^{21} - \frac{1}{24064} a^{19} + \frac{1}{3008} a^{17} - \frac{13}{6016} a^{15} - \frac{23}{3008} a^{13} + \frac{23}{1504} a^{11} - \frac{11}{752} a^{9} + \frac{23}{376} a^{7} + \frac{5}{47} a^{5} - \frac{8}{47} a^{3} + \frac{13}{47} a$, $\frac{1}{770048} a^{28} - \frac{17}{96256} a^{22} + \frac{1}{3008} a^{20} - \frac{15}{24064} a^{18} + \frac{1}{12032} a^{16} + \frac{9}{3008} a^{14} - \frac{3}{3008} a^{12} + \frac{11}{752} a^{10} - \frac{1}{376} a^{8} + \frac{15}{376} a^{6} + \frac{23}{188} a^{4} + \frac{4}{47} a^{2} - \frac{5}{47}$, $\frac{1}{770048} a^{29} - \frac{17}{96256} a^{23} + \frac{1}{3008} a^{21} - \frac{15}{24064} a^{19} + \frac{1}{12032} a^{17} + \frac{9}{3008} a^{15} - \frac{3}{3008} a^{13} + \frac{11}{752} a^{11} - \frac{1}{376} a^{9} + \frac{15}{376} a^{7} + \frac{23}{188} a^{5} + \frac{4}{47} a^{3} - \frac{5}{47} a$, $\frac{1}{1540096} a^{30} + \frac{11}{48128} a^{22} - \frac{3}{12032} a^{20} + \frac{17}{24064} a^{18} - \frac{21}{12032} a^{16} + \frac{7}{6016} a^{14} - \frac{13}{3008} a^{12} - \frac{5}{752} a^{10} - \frac{3}{376} a^{8} - \frac{5}{94} a^{4} + \frac{19}{94} a^{2} - \frac{23}{47}$, $\frac{1}{1540096} a^{31} + \frac{11}{48128} a^{23} - \frac{3}{12032} a^{21} + \frac{17}{24064} a^{19} - \frac{21}{12032} a^{17} + \frac{7}{6016} a^{15} - \frac{13}{3008} a^{13} - \frac{5}{752} a^{11} - \frac{3}{376} a^{9} - \frac{5}{94} a^{5} + \frac{19}{94} a^{3} - \frac{23}{47} a$, $\frac{1}{618521376569437554898347550403161038028966136192864278059352064} a^{32} - \frac{55557609152963376715994584539988286080305750162613882741}{309260688284718777449173775201580519014483068096432139029676032} a^{30} + \frac{92465966130435395876201684673004932886818776589730127721}{154630344142359388724586887600790259507241534048216069514838016} a^{28} + \frac{42027633211984960628885734783475497369981750302742683709}{77315172071179694362293443800395129753620767024108034757419008} a^{26} + \frac{27033156525732454198857302653179778743101239814602333897}{38657586035589847181146721900197564876810383512054017378709504} a^{24} + \frac{404848178897697937459332713144548477939531500257873757525}{9664396508897461795286680475049391219202595878013504344677376} a^{22} + \frac{2452205755281258519013504577264205000924746922863923285559}{9664396508897461795286680475049391219202595878013504344677376} a^{20} + \frac{151933378879274159132018694236335101065442472923468694123}{302012390903045681102708764845293475600081121187922010771168} a^{18} + \frac{449329530319362387160351956056350151192751133534041292009}{1208049563612182724410835059381173902400324484751688043084672} a^{16} - \frac{513208145083982443820895904218519434722438723316486740097}{604024781806091362205417529690586951200162242375844021542336} a^{14} - \frac{3738260839932229132739609240694417962620415629098520585161}{604024781806091362205417529690586951200162242375844021542336} a^{12} - \frac{16048353966610410560577089531767510251250909555674175029}{1148336087083823882519805189525830705703730498813391675936} a^{10} - \frac{1376039481348883755056360377207481941370859779010147022331}{151006195451522840551354382422646737800040560593961005385584} a^{8} + \frac{2927934930319072559238080849209544224294742631898977463047}{75503097725761420275677191211323368900020280296980502692792} a^{6} - \frac{973491563513005078560055043009735388391498292612349216649}{18875774431440355068919297802830842225005070074245125673198} a^{4} + \frac{1190288230930176121922043810152868122860155009437954035}{11467663688602888863255952492606830027342083884717573313} a^{2} - \frac{2353285574092495377539882830921654824867879186723976348837}{9437887215720177534459648901415421112502535037122562836599}$, $\frac{1}{618521376569437554898347550403161038028966136192864278059352064} a^{33} - \frac{55557609152963376715994584539988286080305750162613882741}{309260688284718777449173775201580519014483068096432139029676032} a^{31} + \frac{92465966130435395876201684673004932886818776589730127721}{154630344142359388724586887600790259507241534048216069514838016} a^{29} + \frac{42027633211984960628885734783475497369981750302742683709}{77315172071179694362293443800395129753620767024108034757419008} a^{27} + \frac{27033156525732454198857302653179778743101239814602333897}{38657586035589847181146721900197564876810383512054017378709504} a^{25} + \frac{404848178897697937459332713144548477939531500257873757525}{9664396508897461795286680475049391219202595878013504344677376} a^{23} + \frac{2452205755281258519013504577264205000924746922863923285559}{9664396508897461795286680475049391219202595878013504344677376} a^{21} + \frac{151933378879274159132018694236335101065442472923468694123}{302012390903045681102708764845293475600081121187922010771168} a^{19} + \frac{449329530319362387160351956056350151192751133534041292009}{1208049563612182724410835059381173902400324484751688043084672} a^{17} - \frac{513208145083982443820895904218519434722438723316486740097}{604024781806091362205417529690586951200162242375844021542336} a^{15} - \frac{3738260839932229132739609240694417962620415629098520585161}{604024781806091362205417529690586951200162242375844021542336} a^{13} - \frac{16048353966610410560577089531767510251250909555674175029}{1148336087083823882519805189525830705703730498813391675936} a^{11} - \frac{1376039481348883755056360377207481941370859779010147022331}{151006195451522840551354382422646737800040560593961005385584} a^{9} + \frac{2927934930319072559238080849209544224294742631898977463047}{75503097725761420275677191211323368900020280296980502692792} a^{7} - \frac{973491563513005078560055043009735388391498292612349216649}{18875774431440355068919297802830842225005070074245125673198} a^{5} + \frac{1190288230930176121922043810152868122860155009437954035}{11467663688602888863255952492606830027342083884717573313} a^{3} - \frac{2353285574092495377539882830921654824867879186723976348837}{9437887215720177534459648901415421112502535037122562836599} a$
Class group and class number
Not computed
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 34 |
| The 34 conjugacy class representatives for $C_{34}$ |
| Character table for $C_{34}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-206}) \), 17.17.160470643909878751793805444097921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $17^{2}$ | $17^{2}$ | $17^{2}$ | $17^{2}$ | $34$ | $17^{2}$ | $34$ | $17^{2}$ | $34$ | $34$ | $17^{2}$ | $17^{2}$ | $17^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{17}$ | $17^{2}$ | $34$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 103 | Data not computed | ||||||