Normalized defining polynomial
\( x^{34} + 97 x^{32} + 4040 x^{30} + 96737 x^{28} + 1499007 x^{26} + 15996211 x^{24} + 121823703 x^{22} + 675554879 x^{20} + 2752450407 x^{18} + 8237696660 x^{16} + 17941689717 x^{14} + 27884282812 x^{12} + 29930432911 x^{10} + 21101216892 x^{8} + 9069664015 x^{6} + 2134903778 x^{4} + 234085541 x^{2} + 8048569 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $\frac{1}{149} a^{26} + \frac{50}{149} a^{24} - \frac{51}{149} a^{22} - \frac{40}{149} a^{20} - \frac{8}{149} a^{18} - \frac{1}{149} a^{16} - \frac{39}{149} a^{14} + \frac{58}{149} a^{12} - \frac{13}{149} a^{10} + \frac{20}{149} a^{8} - \frac{54}{149} a^{6} + \frac{49}{149} a^{4} + \frac{44}{149} a^{2} + \frac{42}{149}$, $\frac{1}{149} a^{27} + \frac{50}{149} a^{25} - \frac{51}{149} a^{23} - \frac{40}{149} a^{21} - \frac{8}{149} a^{19} - \frac{1}{149} a^{17} - \frac{39}{149} a^{15} + \frac{58}{149} a^{13} - \frac{13}{149} a^{11} + \frac{20}{149} a^{9} - \frac{54}{149} a^{7} + \frac{49}{149} a^{5} + \frac{44}{149} a^{3} + \frac{42}{149} a$, $\frac{1}{149} a^{28} - \frac{18}{149} a^{24} - \frac{23}{149} a^{22} + \frac{55}{149} a^{20} - \frac{48}{149} a^{18} + \frac{11}{149} a^{16} + \frac{71}{149} a^{14} + \frac{67}{149} a^{12} + \frac{74}{149} a^{10} - \frac{11}{149} a^{8} + \frac{67}{149} a^{6} - \frac{22}{149} a^{4} - \frac{72}{149} a^{2} - \frac{14}{149}$, $\frac{1}{149} a^{29} - \frac{18}{149} a^{25} - \frac{23}{149} a^{23} + \frac{55}{149} a^{21} - \frac{48}{149} a^{19} + \frac{11}{149} a^{17} + \frac{71}{149} a^{15} + \frac{67}{149} a^{13} + \frac{74}{149} a^{11} - \frac{11}{149} a^{9} + \frac{67}{149} a^{7} - \frac{22}{149} a^{5} - \frac{72}{149} a^{3} - \frac{14}{149} a$, $\frac{1}{7612261} a^{30} - \frac{19974}{7612261} a^{28} + \frac{1006}{7612261} a^{26} - \frac{754918}{7612261} a^{24} - \frac{2875684}{7612261} a^{22} - \frac{54262}{7612261} a^{20} + \frac{2778503}{7612261} a^{18} + \frac{3085792}{7612261} a^{16} + \frac{2129301}{7612261} a^{14} + \frac{1364766}{7612261} a^{12} + \frac{2298267}{7612261} a^{10} + \frac{3435119}{7612261} a^{8} + \frac{1434444}{7612261} a^{6} - \frac{2516096}{7612261} a^{4} - \frac{2563819}{7612261} a^{2} - \frac{2519233}{7612261}$, $\frac{1}{7612261} a^{31} - \frac{19974}{7612261} a^{29} + \frac{1006}{7612261} a^{27} - \frac{754918}{7612261} a^{25} - \frac{2875684}{7612261} a^{23} - \frac{54262}{7612261} a^{21} + \frac{2778503}{7612261} a^{19} + \frac{3085792}{7612261} a^{17} + \frac{2129301}{7612261} a^{15} + \frac{1364766}{7612261} a^{13} + \frac{2298267}{7612261} a^{11} + \frac{3435119}{7612261} a^{9} + \frac{1434444}{7612261} a^{7} - \frac{2516096}{7612261} a^{5} - \frac{2563819}{7612261} a^{3} - \frac{2519233}{7612261} a$, $\frac{1}{41459914193042653511794766424621173802262050853} a^{32} + \frac{2672555155916283345437810930852973789649}{41459914193042653511794766424621173802262050853} a^{30} + \frac{86622555525057432426725855438335789352256966}{41459914193042653511794766424621173802262050853} a^{28} + \frac{95699460414135503811643629377313122542504222}{41459914193042653511794766424621173802262050853} a^{26} - \frac{6141006957694377450466797609348189401322245293}{41459914193042653511794766424621173802262050853} a^{24} - \frac{293619159496225352547901669335087771949504}{882125833894524542804143966481301570260894699} a^{22} - \frac{16135848828423262998620410436903923708920981730}{41459914193042653511794766424621173802262050853} a^{20} - \frac{6541059315966023407502360003692108970809346296}{41459914193042653511794766424621173802262050853} a^{18} - \frac{4118009070296874051046473154910057955601961070}{41459914193042653511794766424621173802262050853} a^{16} + \frac{2020198268674419258113223362076146620328759450}{41459914193042653511794766424621173802262050853} a^{14} + \frac{17876752021536342044456299033328494808868024358}{41459914193042653511794766424621173802262050853} a^{12} + \frac{9855810794759762830014987691555253581002477801}{41459914193042653511794766424621173802262050853} a^{10} + \frac{8921293199882189823538324208727272216365111295}{41459914193042653511794766424621173802262050853} a^{8} - \frac{18029685186105652119160328419764768304279008811}{41459914193042653511794766424621173802262050853} a^{6} - \frac{15504887792856039256361419327820918623379078992}{41459914193042653511794766424621173802262050853} a^{4} - \frac{1862256263349437143092680506922247436914236670}{41459914193042653511794766424621173802262050853} a^{2} - \frac{4129061530144514594700920428339869105416621725}{41459914193042653511794766424621173802262050853}$, $\frac{1}{117621776565662008012961752346650270077017438269961} a^{33} - \frac{923226519089863137119140360020668465948761}{117621776565662008012961752346650270077017438269961} a^{31} + \frac{221428030306980687859325705030942385441781453419}{117621776565662008012961752346650270077017438269961} a^{29} + \frac{20868092690094203379441672493564186960718952128}{117621776565662008012961752346650270077017438269961} a^{27} - \frac{12694263342656253317945463591769419156691307611280}{117621776565662008012961752346650270077017438269961} a^{25} - \frac{28773496256564256262535165655121901967094165476520}{117621776565662008012961752346650270077017438269961} a^{23} + \frac{9078766433348042511195761970760577965154352292675}{117621776565662008012961752346650270077017438269961} a^{21} - \frac{38111692150530998076138594758044286828823195846032}{117621776565662008012961752346650270077017438269961} a^{19} - \frac{51522946031679861469322139431287989699744923170544}{117621776565662008012961752346650270077017438269961} a^{17} - \frac{15984618150416383396731827468645446467424261602456}{117621776565662008012961752346650270077017438269961} a^{15} + \frac{22268968884956391166801757021821377913647007588374}{117621776565662008012961752346650270077017438269961} a^{13} + \frac{47188025913586692863597881992433199193356054243337}{117621776565662008012961752346650270077017438269961} a^{11} - \frac{23045420339090550614021427691541743758557626660326}{117621776565662008012961752346650270077017438269961} a^{9} - \frac{41249817068129879622604240078511401817005677478530}{117621776565662008012961752346650270077017438269961} a^{7} + \frac{9362887991053246528871546442642991354775751020772}{117621776565662008012961752346650270077017438269961} a^{5} + \frac{27404024648949653279809820468716490300183832436937}{117621776565662008012961752346650270077017438269961} a^{3} + \frac{4877793782164889162328752154901496451999318089719}{117621776565662008012961752346650270077017438269961} a$
Class group and class number
Not computed
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{6584604691613314584410232644810856}{175691180390737874904529991916776925161} a^{33} + \frac{618612329626957855436301613128915806}{175691180390737874904529991916776925161} a^{31} + \frac{24713817074185250208824167189890342855}{175691180390737874904529991916776925161} a^{29} + \frac{561540738274339995777521393051402837985}{175691180390737874904529991916776925161} a^{27} + \frac{8156131082120196637394360453692187207549}{175691180390737874904529991916776925161} a^{25} + \frac{80425757876536952948256112821231646257473}{175691180390737874904529991916776925161} a^{23} + \frac{556543964208175475927708689737503525208867}{175691180390737874904529991916776925161} a^{21} + \frac{2748129970372826328650487127736848762555126}{175691180390737874904529991916776925161} a^{19} + \frac{9725901127645103558088469325986608258544041}{175691180390737874904529991916776925161} a^{17} + \frac{24507991166461980786549605223032688635076258}{175691180390737874904529991916776925161} a^{15} + \frac{43170973671177914805721133534382400780860678}{175691180390737874904529991916776925161} a^{13} + \frac{51452192474828329626048270856314689082454663}{175691180390737874904529991916776925161} a^{11} + \frac{39415022973935949991658147747138208085265001}{175691180390737874904529991916776925161} a^{9} + \frac{17989903463441247259896493217492020586460844}{175691180390737874904529991916776925161} a^{7} + \frac{4396569637969126262942417169215696981937497}{175691180390737874904529991916776925161} a^{5} + \frac{490204284213911053895895068871093321232306}{175691180390737874904529991916776925161} a^{3} + \frac{16239318835584517704845353142103350429369}{175691180390737874904529991916776925161} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 34 |
| The 34 conjugacy class representatives for $C_{34}$ |
| Character table for $C_{34}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 17.17.160470643909878751793805444097921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $34$ | $17^{2}$ | $34$ | $34$ | $17^{2}$ | $17^{2}$ | $34$ | $34$ | $17^{2}$ | $34$ | $17^{2}$ | $17^{2}$ | $34$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{17}$ | $17^{2}$ | $34$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 103 | Data not computed | ||||||