Normalized defining polynomial
\( x^{34} + 225 x^{32} + 20590 x^{30} + 1030237 x^{28} + 31753524 x^{26} + 640400568 x^{24} + 8726161392 x^{22} + 81579185137 x^{20} + 525386382057 x^{18} + 2318506170329 x^{16} + 6901883479220 x^{14} + 13458854494998 x^{12} + 16357214524365 x^{10} + 11370254800894 x^{8} + 3800340397568 x^{6} + 373964654925 x^{4} + 1846678070 x^{2} + 383161 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $\frac{1}{31831} a^{28} - \frac{10071}{31831} a^{26} - \frac{14887}{31831} a^{24} - \frac{5427}{31831} a^{22} - \frac{10485}{31831} a^{20} - \frac{13148}{31831} a^{18} - \frac{6896}{31831} a^{16} - \frac{2728}{31831} a^{14} - \frac{9903}{31831} a^{12} + \frac{9278}{31831} a^{10} + \frac{3778}{31831} a^{8} + \frac{5756}{31831} a^{6} - \frac{3077}{31831} a^{4} + \frac{4889}{31831} a^{2} - \frac{290}{31831}$, $\frac{1}{31831} a^{29} - \frac{10071}{31831} a^{27} - \frac{14887}{31831} a^{25} - \frac{5427}{31831} a^{23} - \frac{10485}{31831} a^{21} - \frac{13148}{31831} a^{19} - \frac{6896}{31831} a^{17} - \frac{2728}{31831} a^{15} - \frac{9903}{31831} a^{13} + \frac{9278}{31831} a^{11} + \frac{3778}{31831} a^{9} + \frac{5756}{31831} a^{7} - \frac{3077}{31831} a^{5} + \frac{4889}{31831} a^{3} - \frac{290}{31831} a$, $\frac{1}{542535235271} a^{30} + \frac{5920339}{542535235271} a^{28} + \frac{235615098938}{542535235271} a^{26} - \frac{16124855618}{542535235271} a^{24} - \frac{133695187091}{542535235271} a^{22} + \frac{181520543299}{542535235271} a^{20} + \frac{21384118500}{542535235271} a^{18} + \frac{183800383138}{542535235271} a^{16} + \frac{152352047878}{542535235271} a^{14} - \frac{53108313958}{542535235271} a^{12} - \frac{177160542020}{542535235271} a^{10} + \frac{152127465093}{542535235271} a^{8} - \frac{14222568458}{542535235271} a^{6} - \frac{170473130657}{542535235271} a^{4} - \frac{81043923785}{542535235271} a^{2} + \frac{25322589122}{542535235271}$, $\frac{1}{335829310632749} a^{31} + \frac{3005706755}{335829310632749} a^{29} + \frac{85042235980854}{335829310632749} a^{27} - \frac{15377042525976}{335829310632749} a^{25} + \frac{91008440516935}{335829310632749} a^{23} + \frac{124978907729587}{335829310632749} a^{21} + \frac{19716532965471}{335829310632749} a^{19} - \frac{111648646267126}{335829310632749} a^{17} - \frac{65539800233696}{335829310632749} a^{15} + \frac{157414662976889}{335829310632749} a^{13} - \frac{39619511347976}{335829310632749} a^{11} + \frac{119992367598941}{335829310632749} a^{9} - \frac{162326614832663}{335829310632749} a^{7} - \frac{41952930048949}{335829310632749} a^{5} + \frac{137740410270556}{335829310632749} a^{3} + \frac{111460178229579}{335829310632749} a$, $\frac{1}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a^{32} - \frac{22775993140345734673824119231964140978948751354795076184682792314073328846126}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a^{30} - \frac{282317095236900748292407188639261781316315721065851204530171183180033813782980945248}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a^{28} + \frac{10197745405378194889411832242158405814817964560900825202758336749526623547847246973738426}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a^{26} - \frac{6109316057121008439300553906642238115234981171219449423992027686449889516014308106567395}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a^{24} + \frac{13852663896207825930356300289021936231276933036293228579509308076799884592129795101181871}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a^{22} + \frac{19440634475038455424815352805372098323871738581085027826928122192831202547425832386070744}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a^{20} + \frac{4674643171892959808938164426433736869049977056964008401398679341790748940411356209528897}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a^{18} + \frac{10399423085377752773358652453134356715975547884029607211472781806706846166737218384650366}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a^{16} + \frac{10921769240092109310611571514922771288589720083758684277980125816885986565518428023172446}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a^{14} - \frac{19379615360003023045762911729661877710760291715663574042813295214753147592754365241391532}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a^{12} + \frac{10080671478136307578567480338662611983259424209980181249072203199226054129830115541976928}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a^{10} + \frac{10611721718487368460263121772992941730688923797066941124275484206419472974985789286021676}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a^{8} - \frac{8252295183721901537701869363331042680746778053057118426079903748464564657336705880022834}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a^{6} + \frac{13263013300773660977077049867959214766054278043618554510268944072415488190015667292034415}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a^{4} + \frac{5790468103024300810424174389508780748895515427369479969387726564775397235073329635307873}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a^{2} - \frac{4353786971844434391063473496331534000941872778193504513289723018960965604015997472177}{64246084606418007817399881633731907578136184156588213327608412837900314680197077165239}$, $\frac{1}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a^{33} - \frac{39685076832186073190640370623727791630336202824999157857199335569131378798}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a^{31} + \frac{591005492331622427265662238133163293829499357166610877939139395294528717828680099598}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a^{29} - \frac{1521758005427719059259060999969726496504884534278140330547463707281390413338349253196194}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a^{27} + \frac{12336983372878402598113471952713387285592422860902116996561936038284007359171524094298699}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a^{25} - \frac{16453165077513682063756158870222902814917244520619223610070365866405949525289734322266753}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a^{23} - \frac{10775574151025763615070635758478044650915911766751057958423389851411997889671614667460320}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a^{21} - \frac{12132836035256013778263935997780171075064336556161621628525359742328298185843905657480097}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a^{19} + \frac{5115446369157396557202404082302139484803292146183580919632485469235396062191890087459394}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a^{17} + \frac{17188931606215517534769744922442028393122207904605135029664978834021025422606658523431243}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a^{15} + \frac{12315442700304607612131529979225818790082865611734445363899160624596630838971109958627296}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a^{13} - \frac{5467878923077897718750315358970811373952078803577845468993055546182872138152313177256174}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a^{11} + \frac{18274821298159026315960367907746185935160923215950548913706970009688087826974161149189250}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a^{9} + \frac{8846832391584150005811308476707618240972270947100907362782695232040112894674657766435361}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a^{7} - \frac{17170965231383016999863346254502670245217871354094376533921910413595038959081500706332781}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a^{5} - \frac{15890410183970371758763874526046666470682663529052653427936219406198956672267351988863436}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a^{3} + \frac{5890019259788383246795604760034113124678309297937951276098360774954991129589003425489385}{39768326371372746838970526731280050790866297992928104049789607546660294787041990765282941} a$
Class group and class number
Not computed
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{7851960463838949188564327543523114561834178706398711639820112}{249052077132259010574001170287709238939638465895127445133402058018461} a^{33} + \frac{1766697331251013024404923927105974582575257550738201076824534127}{249052077132259010574001170287709238939638465895127445133402058018461} a^{31} + \frac{161673267099683429170277306263665978296012227490898126152480601289}{249052077132259010574001170287709238939638465895127445133402058018461} a^{29} + \frac{8089508426406953366181220853916469456708923918987263746268112054825}{249052077132259010574001170287709238939638465895127445133402058018461} a^{27} + \frac{249333832256825331323732848786194231226437079976084018287332145226184}{249052077132259010574001170287709238939638465895127445133402058018461} a^{25} + \frac{5028597769266582943893783267891816303955740862198429365347451524504521}{249052077132259010574001170287709238939638465895127445133402058018461} a^{23} + \frac{68521465120763839677288473117674458491396335654954998893223201908623947}{249052077132259010574001170287709238939638465895127445133402058018461} a^{21} + \frac{640610937152151688043395488628509971174093781940895058262839465775576142}{249052077132259010574001170287709238939638465895127445133402058018461} a^{19} + \frac{4125821957814019168338928928141008036936422376855433897126339538951155984}{249052077132259010574001170287709238939638465895127445133402058018461} a^{17} + \frac{18208098496321289319371152792389416366278537557557135459761412784196828189}{249052077132259010574001170287709238939638465895127445133402058018461} a^{15} + \frac{54207806289975966761719987689407020988154949551406607896879528076123028660}{249052077132259010574001170287709238939638465895127445133402058018461} a^{13} + \frac{105721606411555365571594658515067291880859352074264807985512329751426516505}{249052077132259010574001170287709238939638465895127445133402058018461} a^{11} + \frac{128520719486586793604415705241725611204920247861180085226823938558286305146}{249052077132259010574001170287709238939638465895127445133402058018461} a^{9} + \frac{89382063431424533381259868656795681587387013006285601591332339429184935953}{249052077132259010574001170287709238939638465895127445133402058018461} a^{7} + \frac{29912723220641463530027890711794975063079113065396552718413554732667519204}{249052077132259010574001170287709238939638465895127445133402058018461} a^{5} + \frac{2961407886941473105805568212863147452870115566638053717451419123006602530}{249052077132259010574001170287709238939638465895127445133402058018461} a^{3} + \frac{17547917385867482099470116922355808775393772717492839299768439726401569}{249052077132259010574001170287709238939638465895127445133402058018461} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 34 |
| The 34 conjugacy class representatives for $C_{34}$ |
| Character table for $C_{34}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 17.17.113335617496346216833223278514633468161.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $34$ | $17^{2}$ | $34$ | $34$ | $17^{2}$ | $17^{2}$ | $34$ | $34$ | $17^{2}$ | $34$ | $17^{2}$ | $17^{2}$ | $34$ | $34$ | $17^{2}$ | $34$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 239 | Data not computed | ||||||