Normalized defining polynomial
\( x^{34} + 5 \)
Invariants
Degree: | $34$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 17]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(-1368652901771550068097893439851509820974658000000000000000000000000000000000\)
\(\medspace = -\,2^{34}\cdot 5^{33}\cdot 17^{34}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(162.14\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2\cdot 5^{33/34}17^{287/272}\approx 189.55996468609607$ | ||
Ramified primes: |
\(2\), \(5\), \(17\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-5}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
not computed
Unit group
Rank: | $16$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{0}\cdot(2\pi)^{17}\cdot R \cdot h}{2\cdot\sqrt{1368652901771550068097893439851509820974658000000000000000000000000000000000}}\cr\mathstrut & \text{
Galois group
$C_2\times F_{17}$ (as 34T9):
A solvable group of order 544 |
The 34 conjugacy class representatives for $C_2\times F_{17}$ |
Character table for $C_2\times F_{17}$ |
Intermediate fields
\(\Q(\sqrt{-5}) \), 17.1.126226846601308710354156494140625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 34 sibling: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | $16^{2}{,}\,{\href{/padicField/3.1.0.1}{1} }^{2}$ | R | $16^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | $16^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.4.0.1}{4} }^{8}{,}\,{\href{/padicField/13.2.0.1}{2} }$ | R | ${\href{/padicField/19.8.0.1}{8} }^{4}{,}\,{\href{/padicField/19.2.0.1}{2} }$ | $16^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | $16^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | $16^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }$ | $16^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }$ | $16^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }^{4}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{8}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }^{4}{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.8.0.1}{8} }^{4}{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.2.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
Deg $16$ | $2$ | $8$ | $16$ | ||||
Deg $16$ | $2$ | $8$ | $16$ | ||||
\(5\)
| Deg $34$ | $34$ | $1$ | $33$ | |||
\(17\)
| Deg $34$ | $17$ | $2$ | $34$ |