Normalized defining polynomial
\( x^{34} - x + 1 \)
Invariants
Degree: | $34$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 17]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(-11627528865280854983574434471375691019078604726189023\)
\(\medspace = -\,83\cdot 1291\cdot 12973\cdot 4134484433\cdot 64200532307\cdot 31512487292285521887257\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(33.99\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(83\), \(1291\), \(12973\), \(4134484433\), \(64200532307\), \(31512487292285521887257\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | $\Q(\sqrt{-11627\!\cdots\!89023}$) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $16$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$a$, $a^{11}-1$, $a^{28}+a^{27}+a^{26}$, $a^{11}+a^{9}$, $a^{6}+a^{2}$, $a^{33}+a^{32}-a^{6}-1$, $a^{33}+a^{32}+a^{31}+a^{30}+a^{29}+a^{28}-a^{10}-1$, $a^{33}+a^{32}+a^{31}+a^{30}+a^{29}+a^{28}+a^{27}+a^{26}+a^{25}+a^{24}+a^{23}+a^{22}+a^{21}+a^{20}+a^{19}+a^{17}+a^{15}-1$, $a^{33}+a^{32}+a^{31}+a^{30}+a^{29}+a^{28}+a^{27}+a^{26}+a^{25}+a^{24}+a^{23}+a^{22}+a^{21}+a^{20}+a^{18}+a^{16}+a^{14}-1$, $a^{27}+a^{24}-a^{18}-a^{15}+a^{9}+a^{6}-1$, $2a^{33}+2a^{32}+a^{31}+a^{30}+a^{29}+a^{28}+a^{26}-a^{21}-a^{18}-a^{14}+a^{13}+a^{9}+a^{6}-a^{5}+a^{4}-a-1$, $a^{33}+a^{32}+a^{30}+a^{27}+a^{24}-a^{20}-a^{18}-a^{17}-a^{15}-a^{12}-a^{9}-a^{6}+a^{5}+a^{2}-a$, $a^{33}+a^{32}-a^{28}-a^{27}-2a^{26}-a^{25}-a^{24}+a^{22}+a^{21}+a^{20}-a^{19}-a^{17}+a^{13}+a^{11}+a^{9}-a^{7}-a^{6}-a^{5}+a^{2}+a-1$, $3a^{33}+a^{32}-a^{30}+a^{28}+2a^{27}+3a^{26}+2a^{25}+a^{24}-a^{23}-a^{22}-a^{21}+2a^{19}+2a^{18}+2a^{17}-a^{14}-a^{13}+a^{12}+a^{11}+2a^{10}-a^{7}-2a^{6}+2a^{3}+a^{2}+a-3$, $a^{33}+a^{32}+a^{31}+a^{30}+a^{29}-a^{27}-2a^{26}-a^{25}+a^{23}-a^{17}+a^{15}+a^{14}-a^{12}+a^{9}+a^{6}-2a^{3}+1$, $2a^{33}+2a^{32}+a^{31}-a^{28}-2a^{27}-2a^{26}-2a^{25}-a^{24}-a^{23}+a^{21}+a^{20}+a^{19}+a^{18}+a^{17}+a^{16}-a^{14}-a^{13}-a^{12}-2a^{11}-a^{10}-a^{9}+a^{5}+a^{4}+a^{3}+a^{2}-2$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 1946991838336.107 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{17}\cdot 1946991838336.107 \cdot 1}{2\cdot\sqrt{11627528865280854983574434471375691019078604726189023}}\cr\approx \mathstrut & 0.334694198327227 \end{aligned}\] (assuming GRH)
Galois group
A non-solvable group of order 295232799039604140847618609643520000000 |
The 12310 conjugacy class representatives for $S_{34}$ are not computed |
Character table for $S_{34}$ is not computed |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $30{,}\,{\href{/padicField/2.4.0.1}{4} }$ | $28{,}\,{\href{/padicField/3.5.0.1}{5} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ | $20{,}\,{\href{/padicField/5.5.0.1}{5} }{,}\,{\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.3.0.1}{3} }{,}\,{\href{/padicField/5.2.0.1}{2} }$ | $16{,}\,{\href{/padicField/7.9.0.1}{9} }^{2}$ | ${\href{/padicField/11.9.0.1}{9} }{,}\,{\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.5.0.1}{5} }{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | $29{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }$ | $32{,}\,{\href{/padicField/17.2.0.1}{2} }$ | $32{,}\,{\href{/padicField/19.2.0.1}{2} }$ | $16{,}\,{\href{/padicField/23.10.0.1}{10} }{,}\,{\href{/padicField/23.8.0.1}{8} }$ | $15{,}\,{\href{/padicField/29.9.0.1}{9} }{,}\,{\href{/padicField/29.5.0.1}{5} }{,}\,{\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | $28{,}\,{\href{/padicField/31.6.0.1}{6} }$ | $24{,}\,{\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ | $16{,}\,{\href{/padicField/41.11.0.1}{11} }{,}\,{\href{/padicField/41.7.0.1}{7} }$ | ${\href{/padicField/43.12.0.1}{12} }{,}\,{\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.5.0.1}{5} }{,}\,{\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.9.0.1}{9} }{,}\,{\href{/padicField/47.8.0.1}{8} }^{2}{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | $29{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/padicField/59.10.0.1}{10} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(83\)
| 83.2.1.1 | $x^{2} + 166$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
83.2.0.1 | $x^{2} + 82 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
Deg $30$ | $1$ | $30$ | $0$ | $C_{30}$ | $[\ ]^{30}$ | ||
\(1291\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | ||
Deg $20$ | $1$ | $20$ | $0$ | 20T1 | $[\ ]^{20}$ | ||
\(12973\)
| $\Q_{12973}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{12973}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{12973}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{12973}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | ||
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $18$ | $1$ | $18$ | $0$ | $C_{18}$ | $[\ ]^{18}$ | ||
\(4134484433\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | ||
Deg $18$ | $1$ | $18$ | $0$ | $C_{18}$ | $[\ ]^{18}$ | ||
\(64200532307\)
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | ||
Deg $13$ | $1$ | $13$ | $0$ | $C_{13}$ | $[\ ]^{13}$ | ||
Deg $14$ | $1$ | $14$ | $0$ | $C_{14}$ | $[\ ]^{14}$ | ||
\(315\!\cdots\!257\)
| $\Q_{31\!\cdots\!57}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $8$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | ||
Deg $8$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | ||
Deg $15$ | $1$ | $15$ | $0$ | $C_{15}$ | $[\ ]^{15}$ |