# SageMath code for working with number field 33.33.964748920938762847635574420140466077720720339834593232479190796888489.1 # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: x = polygen(QQ); K. = NumberField(x^33 - 8*x^32 - 70*x^31 + 734*x^30 + 1439*x^29 - 27994*x^28 + 11289*x^27 + 571079*x^26 - 1005928*x^25 - 6614661*x^24 + 19440415*x^23 + 40980613*x^22 - 194665653*x^21 - 82258867*x^20 + 1125872365*x^19 - 536982871*x^18 - 3781576926*x^17 + 4155619240*x^16 + 6998281772*x^15 - 12201861484*x^14 - 5994133153*x^13 + 18812121252*x^12 + 75160599*x^11 - 16337602363*x^10 + 3902636199*x^9 + 8090155706*x^8 - 3031301627*x^7 - 2187750082*x^6 + 1012187926*x^5 + 277584302*x^4 - 153651191*x^3 - 8485173*x^2 + 8057502*x - 470213) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Autmorphisms: K.automorphisms() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Analytic class number formula: # self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K. = NumberField(x^33 - 8*x^32 - 70*x^31 + 734*x^30 + 1439*x^29 - 27994*x^28 + 11289*x^27 + 571079*x^26 - 1005928*x^25 - 6614661*x^24 + 19440415*x^23 + 40980613*x^22 - 194665653*x^21 - 82258867*x^20 + 1125872365*x^19 - 536982871*x^18 - 3781576926*x^17 + 4155619240*x^16 + 6998281772*x^15 - 12201861484*x^14 - 5994133153*x^13 + 18812121252*x^12 + 75160599*x^11 - 16337602363*x^10 + 3902636199*x^9 + 8090155706*x^8 - 3031301627*x^7 - 2187750082*x^6 + 1012187926*x^5 + 277584302*x^4 - 153651191*x^3 - 8485173*x^2 + 8057502*x - 470213) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK)))) # Intermediate fields: K.subfields()[1:-1] # Galois group: K.galois_group(type='pari') # Frobenius cycle types: # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]