Normalized defining polynomial
\( x^{33} - 8 x^{32} - 70 x^{31} + 734 x^{30} + 1439 x^{29} - 27994 x^{28} + 11289 x^{27} + 571079 x^{26} - 1005928 x^{25} - 6614661 x^{24} + 19440415 x^{23} + 40980613 x^{22} - 194665653 x^{21} - 82258867 x^{20} + 1125872365 x^{19} - 536982871 x^{18} - 3781576926 x^{17} + 4155619240 x^{16} + 6998281772 x^{15} - 12201861484 x^{14} - 5994133153 x^{13} + 18812121252 x^{12} + 75160599 x^{11} - 16337602363 x^{10} + 3902636199 x^{9} + 8090155706 x^{8} - 3031301627 x^{7} - 2187750082 x^{6} + 1012187926 x^{5} + 277584302 x^{4} - 153651191 x^{3} - 8485173 x^{2} + 8057502 x - 470213 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $\frac{1}{277} a^{29} + \frac{83}{277} a^{28} + \frac{17}{277} a^{27} - \frac{47}{277} a^{26} + \frac{50}{277} a^{25} + \frac{115}{277} a^{24} + \frac{120}{277} a^{23} + \frac{22}{277} a^{22} - \frac{55}{277} a^{21} - \frac{95}{277} a^{20} + \frac{112}{277} a^{19} + \frac{63}{277} a^{18} - \frac{20}{277} a^{17} + \frac{22}{277} a^{16} + \frac{106}{277} a^{15} - \frac{24}{277} a^{14} + \frac{76}{277} a^{13} - \frac{121}{277} a^{12} - \frac{14}{277} a^{11} - \frac{129}{277} a^{10} + \frac{60}{277} a^{9} - \frac{82}{277} a^{8} + \frac{127}{277} a^{7} - \frac{88}{277} a^{6} - \frac{39}{277} a^{5} + \frac{122}{277} a^{4} - \frac{79}{277} a^{3} - \frac{33}{277} a^{2} - \frac{138}{277} a - \frac{11}{277}$, $\frac{1}{277} a^{30} + \frac{53}{277} a^{28} - \frac{73}{277} a^{27} + \frac{73}{277} a^{26} + \frac{120}{277} a^{25} - \frac{7}{277} a^{24} + \frac{34}{277} a^{23} + \frac{58}{277} a^{22} + \frac{38}{277} a^{21} - \frac{36}{277} a^{20} - \frac{92}{277} a^{19} + \frac{14}{277} a^{18} + \frac{20}{277} a^{17} - \frac{58}{277} a^{16} + \frac{42}{277} a^{15} + \frac{129}{277} a^{14} - \frac{58}{277} a^{13} + \frac{57}{277} a^{12} - \frac{75}{277} a^{11} - \frac{36}{277} a^{10} - \frac{76}{277} a^{9} + \frac{8}{277} a^{8} - \frac{103}{277} a^{7} + \frac{63}{277} a^{6} + \frac{35}{277} a^{5} + \frac{44}{277} a^{4} - \frac{124}{277} a^{3} + \frac{108}{277} a^{2} + \frac{86}{277} a + \frac{82}{277}$, $\frac{1}{277} a^{31} - \frac{40}{277} a^{28} + \frac{3}{277} a^{27} + \frac{118}{277} a^{26} + \frac{113}{277} a^{25} + \frac{33}{277} a^{24} + \frac{69}{277} a^{23} - \frac{20}{277} a^{22} + \frac{109}{277} a^{21} - \frac{43}{277} a^{20} - \frac{105}{277} a^{19} + \frac{5}{277} a^{18} - \frac{106}{277} a^{17} - \frac{16}{277} a^{16} + \frac{51}{277} a^{15} + \frac{106}{277} a^{14} - \frac{93}{277} a^{13} - \frac{33}{277} a^{12} - \frac{125}{277} a^{11} + \frac{113}{277} a^{10} - \frac{125}{277} a^{9} + \frac{88}{277} a^{8} - \frac{20}{277} a^{7} - \frac{10}{277} a^{6} - \frac{105}{277} a^{5} + \frac{58}{277} a^{4} - \frac{137}{277} a^{3} - \frac{104}{277} a^{2} - \frac{83}{277} a + \frac{29}{277}$, $\frac{1}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993} a^{32} - \frac{153222654234554209105602667300497964440569267885814315940387571070693122986625524065740482654982275545447540324642792788}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993} a^{31} + \frac{375395039513225772279154382339668618913524418197210851585624227855891415364262176780553154241337808889003517557012315357}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993} a^{30} + \frac{211969398119538889642998574557432628542820988025007265694911650042923086562325292409358438784952896434777623270476686864}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993} a^{29} - \frac{72075934459092328720339186628363694681666466773665432547627559427361499240689369945766258329087884983433780982212960481581}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993} a^{28} + \frac{77179077848678198723893842911730083758882586707120796222133268048498667067822767187108059211019704807927186181012902442941}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993} a^{27} - \frac{56743053461517266703898621136157121080683140231073259341151404972182690380436683452255087410095935679668239089016585618499}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993} a^{26} + \frac{103484805391608627633871318666985980911104425339332754836331383384312400861217514860324597154985103172863848038915645733841}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993} a^{25} - \frac{119667777375746060730127513954361249241611244564666004135761065276407972854402273746745075205071475830889092124790465760748}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993} a^{24} - \frac{2688779606485824349593153048446020247471351389998542397479972962799453934272320094797154591355573515888309455163517352085}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993} a^{23} - \frac{15493162757095906184672150367592740681264721495421424153153693005686348332648758772047199866427793216458605205013026780992}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993} a^{22} + \frac{24555401519235302141567129566633657687364591887432360305617957955143031618293076283049342924173115081801045931270477657155}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993} a^{21} + \frac{96801572883419214778829752750540164504918568182067358232208227538149491195864898452714515326906839311837944203730001378191}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993} a^{20} - \frac{105892500302150492977366194169692117295976460644956557719057350525280704572034336891823500780308005034995376800530967142622}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993} a^{19} + \frac{20778455200380947529385850048434201654548295849602023972946432054805714330221419498634668018752521510110692335481344629398}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993} a^{18} - \frac{100906976730493768983656364383788174390908355852902064291505600180601745224772664789735036435395780781488945835986191373950}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993} a^{17} + \frac{129109697373270966339236778180688434544839343559819325815348935486384074957352434703429409554454309723438204291359522903674}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993} a^{16} + \frac{39167804087224855168388434219835901681237640800289903569635774370486187613557072984792863198761206544005957513231809645673}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993} a^{15} - \frac{130114953514404325194128130579042649431175025340124867988340014778751537619586395251373888637952729143044917307432585728354}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993} a^{14} + \frac{42498143065508241400643149009775384390554021060133944296757351247457309768914117812258498883028250299724429969021498618459}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993} a^{13} + \frac{74155451654996645536377639353955807796770953634106107117420030715855916900200771283111856847835502434266636546219750949334}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993} a^{12} + \frac{126073037101832852527824118550895382331633796178668442167129972752463194201391051955468335151256051231600525113014609433220}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993} a^{11} - \frac{78056770297877445248980926212277034006634835615275061509526280946545484580533893688335294231831401300467057093682355886885}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993} a^{10} - \frac{7134786161061926339661780658691355288811259768376034051048502289046632969419219698892709220520777195361235277889525580597}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993} a^{9} - \frac{95243888858886694974111035054532756513982997212918883953867912726444828832634477324019003494681012653277826135605019657142}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993} a^{8} - \frac{131403819603361881216464706281458055685483904037028400924544494804228545818284965787247298743225734680224477965216007879418}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993} a^{7} + \frac{57471456680816117286943200060503543180215712347658642260482259099420812686150998634869655325416443899712361752526184473765}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993} a^{6} + \frac{93616918350344065895140864412952747103345843247284122293659749840878926220450356809350004730222858737994895743956460461539}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993} a^{5} - \frac{124658261266607110427170623450447469536012464100488837801217361786702333826658845184569608375369273540982833966608830898683}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993} a^{4} - \frac{24060385800071189102895346015981211693026673337999226814831667740764846979888942116237518112790101973168046115956350039651}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993} a^{3} - \frac{111004881096609644839369442310911969537250154216404894084032842143176070519023412413004064477877252902605858890148210764258}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993} a^{2} + \frac{137256327289717028819592741912111789983093166200329558769618186039842343282357176190943742992487918591043756672509895909293}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993} a + \frac{138357970789074308708698072859864353914115186847785537485416648074901256299224391663423041989954283469433421006432729284208}{282078349870259062300720349979738234839445961011254957816118061949638701997148262699431408093526674851867962491079545689993}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $32$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 859641744829651100000000 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A cyclic group of order 33 |
The 33 conjugacy class representatives for $C_{33}$ |
Character table for $C_{33}$ is not computed |
Intermediate fields
3.3.361.1, \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $33$ | $33$ | $33$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{3}$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{3}$ | $33$ | $33$ | R | R | $33$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{3}$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{3}$ | $33$ | $33$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{11}$ | $33$ | $33$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
19 | Data not computed | ||||||
23 | Data not computed |