Normalized defining polynomial
\(x^{33} - 63 x^{31} - 4 x^{30} + 1710 x^{29} + 204 x^{28} - 26254 x^{27} - 4392 x^{26} + 251754 x^{25} + 52248 x^{24} - 1572192 x^{23} - 377544 x^{22} + 6479940 x^{21} + 1717920 x^{20} - 17548167 x^{19} - 4953616 x^{18} + 30725595 x^{17} + 8949468 x^{16} - 34072421 x^{15} - 9933084 x^{14} + 23552382 x^{13} + 6584132 x^{12} - 10086444 x^{11} - 2580438 x^{10} + 2636960 x^{9} + 587106 x^{8} - 404862 x^{7} - 74061 x^{6} + 33768 x^{5} + 4755 x^{4} - 1326 x^{3} - 135 x^{2} + 18 x + 1\)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $\frac{1}{315060576932040188254188918553316867927726003844609577227312423072109353457} a^{32} - \frac{6780210491147747067436949760715781193095500383388176198273680318143503928}{315060576932040188254188918553316867927726003844609577227312423072109353457} a^{31} - \frac{52916933625934858050588721672295172552169596040125697127180072708062703318}{315060576932040188254188918553316867927726003844609577227312423072109353457} a^{30} + \frac{60050226259424403243592646026543076032545504596820005197809730313037085306}{315060576932040188254188918553316867927726003844609577227312423072109353457} a^{29} - \frac{95876552504366972146914723715515669931141301423806612187518667474359573495}{315060576932040188254188918553316867927726003844609577227312423072109353457} a^{28} + \frac{76962431332006724213700320487061805297993453462307626514100759513790410738}{315060576932040188254188918553316867927726003844609577227312423072109353457} a^{27} - \frac{35992845286188713128964740707382616499319889244728051344708900887863065634}{315060576932040188254188918553316867927726003844609577227312423072109353457} a^{26} + \frac{35581581837532597901199770933868354005806065964999388309201559505794893856}{315060576932040188254188918553316867927726003844609577227312423072109353457} a^{25} - \frac{156110845072161358424186125280549006571432181546998812273739716654195172114}{315060576932040188254188918553316867927726003844609577227312423072109353457} a^{24} + \frac{115408647410853784938555677365901965027169513080011785872989252036333597050}{315060576932040188254188918553316867927726003844609577227312423072109353457} a^{23} - \frac{90765092222979467393748246867438253957702053028729377500318104277929617721}{315060576932040188254188918553316867927726003844609577227312423072109353457} a^{22} - \frac{122023400663344809188316256930684069328451574931357103288087073002814389538}{315060576932040188254188918553316867927726003844609577227312423072109353457} a^{21} + \frac{91661959859164719457313852811970721785209339330579945349968427167764260769}{315060576932040188254188918553316867927726003844609577227312423072109353457} a^{20} - \frac{155349488590276948701554084165233171825968717377486634860267954047686199412}{315060576932040188254188918553316867927726003844609577227312423072109353457} a^{19} + \frac{129224134324656249694260904040506691467028629190254723242928101912413680809}{315060576932040188254188918553316867927726003844609577227312423072109353457} a^{18} - \frac{40254266637168771371080621541871787019512802644326211342831897761334296780}{315060576932040188254188918553316867927726003844609577227312423072109353457} a^{17} + \frac{111823285614662482842552520658490762085747410048504906256726869820791673630}{315060576932040188254188918553316867927726003844609577227312423072109353457} a^{16} + \frac{52573206417642030529586648247339992903063658072565621428004011790479091693}{315060576932040188254188918553316867927726003844609577227312423072109353457} a^{15} + \frac{10993301109098904561576379520330782153518698589525138989552500143560916679}{315060576932040188254188918553316867927726003844609577227312423072109353457} a^{14} - \frac{56298181650837752836037974538126769705907608981485399719021352408975377670}{315060576932040188254188918553316867927726003844609577227312423072109353457} a^{13} + \frac{22968504237290326712283219793731370587554667097411053268057599898943376687}{315060576932040188254188918553316867927726003844609577227312423072109353457} a^{12} - \frac{124104906277879312298002525425481693411270908436292141832404228512264250566}{315060576932040188254188918553316867927726003844609577227312423072109353457} a^{11} + \frac{8650050351697447591446241637940357910000517761115724805111973017984417847}{315060576932040188254188918553316867927726003844609577227312423072109353457} a^{10} + \frac{18669127128838002992702929242880699761746622276028259956385396328076547399}{315060576932040188254188918553316867927726003844609577227312423072109353457} a^{9} - \frac{150410320251912156668706186536469141285634926459368061999656872984161062972}{315060576932040188254188918553316867927726003844609577227312423072109353457} a^{8} - \frac{35202404756386676743853738550361705795608788113501042465633159863792963790}{315060576932040188254188918553316867927726003844609577227312423072109353457} a^{7} + \frac{40052502288447171571609893770087385606780620865518454130536749199762490683}{315060576932040188254188918553316867927726003844609577227312423072109353457} a^{6} - \frac{69962891754784360558019275668339944896548143842069483295900137000991477255}{315060576932040188254188918553316867927726003844609577227312423072109353457} a^{5} + \frac{71484330482486729245125354832758377175437385338908095037028208526836980612}{315060576932040188254188918553316867927726003844609577227312423072109353457} a^{4} + \frac{61369290070442566289733903444717198522333411746733431056368553101253441095}{315060576932040188254188918553316867927726003844609577227312423072109353457} a^{3} - \frac{135552926134166117545060617217780355964054016882098786574414111648118963779}{315060576932040188254188918553316867927726003844609577227312423072109353457} a^{2} + \frac{109861811613379077152658558152025661158479437539510888847696918327709137328}{315060576932040188254188918553316867927726003844609577227312423072109353457} a - \frac{102682777897231309888668977003867737961571190872975548750527681146600343145}{315060576932040188254188918553316867927726003844609577227312423072109353457}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $32$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 176588774716401650000 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A cyclic group of order 33 |
The 33 conjugacy class representatives for $C_{33}$ |
Character table for $C_{33}$ is not computed |
Intermediate fields
\(\Q(\zeta_{9})^+\), \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $33$ | R | $33$ | $33$ | $33$ | $33$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{3}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{3}$ | R | $33$ | $33$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{3}$ | $33$ | $33$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{11}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{3}$ | $33$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
3 | Data not computed | ||||||
23 | Data not computed |