Normalized defining polynomial
\( x^{33} - x^{32} - 160 x^{31} + 127 x^{30} + 10849 x^{29} - 5947 x^{28} - 413016 x^{27} + 118107 x^{26} + 9866153 x^{25} - 311795 x^{24} - 156418516 x^{23} - 30572191 x^{22} + 1696328846 x^{21} + 645059522 x^{20} - 12788859303 x^{19} - 6539712577 x^{18} + 67632545787 x^{17} + 39220743072 x^{16} - 252575482403 x^{15} - 146537401384 x^{14} + 670475622740 x^{13} + 343137082097 x^{12} - 1269500051881 x^{11} - 487547125457 x^{10} + 1698429690588 x^{9} + 367945862575 x^{8} - 1552342739498 x^{7} - 54894829630 x^{6} + 900256719370 x^{5} - 121808299470 x^{4} - 284076623751 x^{3} + 78469286329 x^{2} + 32809035298 x - 11929082177 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6}$, $\frac{1}{4} a^{14} - \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{19} - \frac{1}{4} a^{5}$, $\frac{1}{4} a^{20} - \frac{1}{4} a^{6}$, $\frac{1}{8} a^{21} - \frac{1}{8} a^{14} - \frac{1}{8} a^{7} + \frac{1}{8}$, $\frac{1}{8} a^{22} - \frac{1}{8} a^{15} - \frac{1}{8} a^{8} + \frac{1}{8} a$, $\frac{1}{8} a^{23} - \frac{1}{8} a^{16} - \frac{1}{8} a^{9} + \frac{1}{8} a^{2}$, $\frac{1}{16} a^{24} - \frac{1}{16} a^{22} - \frac{1}{16} a^{21} - \frac{1}{8} a^{18} - \frac{1}{16} a^{17} - \frac{1}{8} a^{16} - \frac{1}{16} a^{15} + \frac{1}{16} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{16} a^{10} - \frac{3}{16} a^{8} - \frac{3}{16} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{8} a^{4} - \frac{7}{16} a^{3} - \frac{3}{8} a^{2} - \frac{3}{16} a - \frac{5}{16}$, $\frac{1}{16} a^{25} - \frac{1}{16} a^{23} - \frac{1}{16} a^{22} - \frac{1}{8} a^{19} - \frac{1}{16} a^{18} - \frac{1}{8} a^{17} - \frac{1}{16} a^{16} + \frac{1}{16} a^{15} - \frac{1}{4} a^{12} - \frac{1}{16} a^{11} - \frac{3}{16} a^{9} - \frac{3}{16} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{8} a^{5} - \frac{7}{16} a^{4} - \frac{3}{8} a^{3} - \frac{3}{16} a^{2} - \frac{5}{16} a - \frac{1}{4}$, $\frac{1}{16} a^{26} - \frac{1}{16} a^{23} - \frac{1}{16} a^{22} - \frac{1}{16} a^{21} - \frac{1}{8} a^{20} - \frac{1}{16} a^{19} - \frac{1}{8} a^{17} - \frac{1}{16} a^{16} - \frac{1}{16} a^{15} + \frac{1}{16} a^{14} - \frac{1}{16} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{3}{16} a^{9} + \frac{1}{16} a^{8} - \frac{3}{16} a^{7} + \frac{1}{8} a^{6} + \frac{1}{16} a^{5} + \frac{1}{4} a^{4} + \frac{3}{8} a^{3} + \frac{5}{16} a^{2} + \frac{1}{16} a + \frac{3}{16}$, $\frac{1}{16} a^{27} - \frac{1}{16} a^{23} - \frac{1}{16} a^{21} - \frac{1}{16} a^{20} - \frac{1}{8} a^{17} + \frac{1}{16} a^{16} - \frac{1}{8} a^{15} - \frac{1}{16} a^{14} + \frac{3}{16} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{10} + \frac{1}{16} a^{9} - \frac{3}{16} a^{7} + \frac{5}{16} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{8} a^{3} + \frac{7}{16} a^{2} - \frac{3}{8} a - \frac{3}{16}$, $\frac{1}{5792} a^{28} - \frac{131}{5792} a^{27} + \frac{3}{724} a^{26} + \frac{21}{2896} a^{25} - \frac{69}{5792} a^{24} - \frac{205}{5792} a^{23} - \frac{151}{5792} a^{22} - \frac{4}{181} a^{21} - \frac{217}{5792} a^{20} - \frac{75}{1448} a^{19} + \frac{1}{181} a^{18} - \frac{177}{5792} a^{17} + \frac{239}{5792} a^{16} - \frac{197}{5792} a^{15} + \frac{45}{724} a^{14} + \frac{1443}{5792} a^{13} - \frac{85}{1448} a^{12} + \frac{317}{2896} a^{11} - \frac{639}{5792} a^{10} - \frac{403}{5792} a^{9} + \frac{275}{5792} a^{8} + \frac{20}{181} a^{7} + \frac{2281}{5792} a^{6} + \frac{57}{724} a^{5} - \frac{1}{1448} a^{4} + \frac{2693}{5792} a^{3} - \frac{127}{5792} a^{2} + \frac{1017}{5792} a - \frac{969}{5792}$, $\frac{1}{5792} a^{29} - \frac{123}{5792} a^{27} - \frac{9}{724} a^{26} + \frac{3}{5792} a^{25} + \frac{21}{724} a^{24} + \frac{9}{362} a^{23} - \frac{361}{5792} a^{22} - \frac{333}{5792} a^{21} - \frac{129}{5792} a^{20} - \frac{267}{2896} a^{19} - \frac{691}{5792} a^{18} + \frac{55}{1448} a^{17} - \frac{191}{2896} a^{16} - \frac{107}{5792} a^{15} - \frac{629}{5792} a^{14} - \frac{633}{5792} a^{13} - \frac{13}{724} a^{12} - \frac{483}{5792} a^{11} - \frac{213}{1448} a^{10} + \frac{355}{1448} a^{9} + \frac{1189}{5792} a^{8} + \frac{1413}{5792} a^{7} + \frac{2789}{5792} a^{6} - \frac{1085}{2896} a^{5} + \frac{2531}{5792} a^{4} - \frac{41}{362} a^{3} - \frac{751}{2896} a^{2} + \frac{607}{2896} a + \frac{1933}{5792}$, $\frac{1}{5792} a^{30} + \frac{105}{5792} a^{27} + \frac{59}{5792} a^{26} - \frac{3}{181} a^{25} - \frac{17}{5792} a^{24} - \frac{59}{1448} a^{23} - \frac{41}{2896} a^{22} + \frac{55}{5792} a^{21} - \frac{75}{5792} a^{20} - \frac{667}{5792} a^{19} + \frac{87}{2896} a^{18} - \frac{71}{5792} a^{17} - \frac{197}{2896} a^{16} - \frac{61}{1448} a^{15} - \frac{517}{5792} a^{14} - \frac{1081}{5792} a^{13} + \frac{1137}{5792} a^{12} + \frac{3}{724} a^{11} - \frac{71}{5792} a^{10} + \frac{4}{181} a^{9} - \frac{481}{2896} a^{8} + \frac{421}{5792} a^{7} - \frac{709}{5792} a^{6} + \frac{1423}{5792} a^{5} + \frac{693}{2896} a^{4} - \frac{769}{5792} a^{3} + \frac{2245}{5792} a^{2} + \frac{131}{724} a - \frac{1175}{5792}$, $\frac{1}{5792} a^{31} + \frac{29}{2896} a^{27} - \frac{41}{2896} a^{26} - \frac{83}{5792} a^{25} + \frac{131}{5792} a^{24} + \frac{85}{5792} a^{23} - \frac{9}{2896} a^{22} + \frac{333}{5792} a^{21} + \frac{199}{2896} a^{20} + \frac{45}{1448} a^{19} + \frac{189}{5792} a^{18} - \frac{271}{5792} a^{17} + \frac{363}{5792} a^{16} - \frac{13}{724} a^{15} + \frac{215}{5792} a^{14} + \frac{469}{2896} a^{13} + \frac{667}{2896} a^{12} + \frac{1415}{5792} a^{11} + \frac{253}{5792} a^{10} + \frac{447}{5792} a^{9} + \frac{253}{2896} a^{8} + \frac{147}{5792} a^{7} + \frac{1143}{2896} a^{6} + \frac{297}{724} a^{5} + \frac{1823}{5792} a^{4} + \frac{15}{2896} a^{3} + \frac{1713}{5792} a^{2} + \frac{20}{181} a - \frac{1063}{5792}$, $\frac{1}{6137649480915850829527860255871200928555564298030924188474683009312815981293470679490437576408446708212943202774101036437680752704} a^{32} - \frac{166857052534244019064537945070193662973032697322934012424023711580927746967856506388928321474047522911573017477487625629889681}{3068824740457925414763930127935600464277782149015462094237341504656407990646735339745218788204223354106471601387050518218840376352} a^{31} - \frac{67947909676207260983053617922969422244677663065893198296580504883442107451921438741266748825531831047312812650832278647855359}{3068824740457925414763930127935600464277782149015462094237341504656407990646735339745218788204223354106471601387050518218840376352} a^{30} + \frac{39881142992725189040232003731208679834594558186648439270088404171566963917191305203972606897896018358024833195481147850729585}{6137649480915850829527860255871200928555564298030924188474683009312815981293470679490437576408446708212943202774101036437680752704} a^{29} - \frac{3130690420027675129274385406520569437932702594704092173934699482070382283820606993402742666328912576998867668161889311429469}{1534412370228962707381965063967800232138891074507731047118670752328203995323367669872609394102111677053235800693525259109420188176} a^{28} - \frac{135291346973935006603905274514163642555592354284321256097989045189408172209154475854991824849153936970708882228997417762699652367}{6137649480915850829527860255871200928555564298030924188474683009312815981293470679490437576408446708212943202774101036437680752704} a^{27} + \frac{143285514071505853980044298636106637299490784671866769179563795910119557152343053278394005988820804137960189884499438509946110139}{6137649480915850829527860255871200928555564298030924188474683009312815981293470679490437576408446708212943202774101036437680752704} a^{26} + \frac{35920426504103726879079675301519560075079136369758941673589097090086523779841087439423119116208328480622911240175677445276624627}{1534412370228962707381965063967800232138891074507731047118670752328203995323367669872609394102111677053235800693525259109420188176} a^{25} - \frac{121397550943702912775544043163454298647229977615539385173594783912416963028889483938360962687988963518834627939373927987148318083}{6137649480915850829527860255871200928555564298030924188474683009312815981293470679490437576408446708212943202774101036437680752704} a^{24} - \frac{84800471549418776413480423774744123429344327312551376767898593213547007563922249930171233330311910620039818584968940287401294345}{1534412370228962707381965063967800232138891074507731047118670752328203995323367669872609394102111677053235800693525259109420188176} a^{23} + \frac{9244472756202725571389955723812725849996356373074069121898035783274134257739405429448893044153580848563046198694261928705627891}{191801546278620338422745632995975029017361384313466380889833844041025499415420958734076174262763959631654475086690657388677523522} a^{22} - \frac{379434433483205317631491205014707982241216490146375634693770598232162941568477059204210735500007145054839536168841889252972587903}{6137649480915850829527860255871200928555564298030924188474683009312815981293470679490437576408446708212943202774101036437680752704} a^{21} + \frac{348302559309398322956858453859029452429508907906313687410577655567211702695043420652165702540942927544117253923980646518131157889}{6137649480915850829527860255871200928555564298030924188474683009312815981293470679490437576408446708212943202774101036437680752704} a^{20} - \frac{651391902699785073079518137411450122114822141764110413879087741059755514479763974742854078064531656748133744775154528168920174763}{6137649480915850829527860255871200928555564298030924188474683009312815981293470679490437576408446708212943202774101036437680752704} a^{19} - \frac{60369110631264874515308286735939593186371411144687266461465924262662434060766400911078782571509717763494487159282504362223229585}{767206185114481353690982531983900116069445537253865523559335376164101997661683834936304697051055838526617900346762629554710094088} a^{18} - \frac{694922853606211150344749174680522293674883513456330158385356130880556832245307045150253424329656093610576320809258090610973228417}{6137649480915850829527860255871200928555564298030924188474683009312815981293470679490437576408446708212943202774101036437680752704} a^{17} - \frac{23339316729455510785599967800678593892769972271553972805308087931468366293548133039098504241517128612475225803329152225557678459}{383603092557240676845491265991950058034722768626932761779667688082050998830841917468152348525527919263308950173381314777355047044} a^{16} + \frac{39498539884253338256649710123202314585755283703469723917531516386536033767776287892625919752579216841966838491979779951967841611}{767206185114481353690982531983900116069445537253865523559335376164101997661683834936304697051055838526617900346762629554710094088} a^{15} - \frac{137294643503344416765771960106648125360560363958000113655598365851458034271754323927737448775444426662597230402124873926556499867}{6137649480915850829527860255871200928555564298030924188474683009312815981293470679490437576408446708212943202774101036437680752704} a^{14} + \frac{392430545691461935846353094233730401268143446019787111039242461251164993797480460705770674853279673590525157830731856214145325911}{6137649480915850829527860255871200928555564298030924188474683009312815981293470679490437576408446708212943202774101036437680752704} a^{13} + \frac{557106841710180136228964181863092550677081717111052564653623996669785989152115507953238077592374524025511187445899010623537803577}{6137649480915850829527860255871200928555564298030924188474683009312815981293470679490437576408446708212943202774101036437680752704} a^{12} - \frac{12349740312082892623914460384056135069937994832694150229848456163065632741002013669152313109564626085746973646042621781841789345}{1534412370228962707381965063967800232138891074507731047118670752328203995323367669872609394102111677053235800693525259109420188176} a^{11} + \frac{1346091525235358576998688294698629979789818372109987625000893878287136846108197127249890905610994822383151670815068510930127280283}{6137649480915850829527860255871200928555564298030924188474683009312815981293470679490437576408446708212943202774101036437680752704} a^{10} + \frac{32269801288833108540644563480101710773189598128533899595329052946171773903219568959841174200386875305573530999003604476668371881}{767206185114481353690982531983900116069445537253865523559335376164101997661683834936304697051055838526617900346762629554710094088} a^{9} + \frac{206546104073067069509671344673375633840892292999915319914541339613237683367208584323721451719087887349118014758592807389969168493}{1534412370228962707381965063967800232138891074507731047118670752328203995323367669872609394102111677053235800693525259109420188176} a^{8} - \frac{248073579334872874885586444085688711541835229450921564509201294559014669375154206645998373885339687506716603726154809237382593941}{6137649480915850829527860255871200928555564298030924188474683009312815981293470679490437576408446708212943202774101036437680752704} a^{7} + \frac{2568197605012534573026916082040419613294061010137409351557468672531408281736843268021172484421825337277583397269121720242559254151}{6137649480915850829527860255871200928555564298030924188474683009312815981293470679490437576408446708212943202774101036437680752704} a^{6} + \frac{482302328827597240763638055053412536791034292548344316141676551055131838021042279662631194544138434811910444646887249684331096103}{6137649480915850829527860255871200928555564298030924188474683009312815981293470679490437576408446708212943202774101036437680752704} a^{5} - \frac{1821853277140147504676929193734821264336789326981369436697710578209518600556934014028690223851354044612781596796663744853111691265}{6137649480915850829527860255871200928555564298030924188474683009312815981293470679490437576408446708212943202774101036437680752704} a^{4} - \frac{2789055168123612669765970510525901980829046938066860817381826134677317528739758709791745748083424995578699083104344855907063730437}{6137649480915850829527860255871200928555564298030924188474683009312815981293470679490437576408446708212943202774101036437680752704} a^{3} - \frac{556780071622873386435008787443240168762819920358009215959446880585923073164933907537462696911745164559583586556288368797533455915}{3068824740457925414763930127935600464277782149015462094237341504656407990646735339745218788204223354106471601387050518218840376352} a^{2} + \frac{2733494329005887270091947844121231024939128750169184147772542631032945981425435528604468628502734968249028555863907510651986611939}{6137649480915850829527860255871200928555564298030924188474683009312815981293470679490437576408446708212943202774101036437680752704} a - \frac{903648549198294686089883344962100574009063860384800423659476021625655767602530776453387698829122709429648492588821317446381583021}{6137649480915850829527860255871200928555564298030924188474683009312815981293470679490437576408446708212943202774101036437680752704}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $32$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2249458248958823000000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 33 |
| The 33 conjugacy class representatives for $C_{33}$ |
| Character table for $C_{33}$ is not computed |
Intermediate fields
| 3.3.109561.1, 11.11.15786284949774657045043801.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{11}$ | $33$ | $33$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{3}$ | $33$ | $33$ | $33$ | $33$ | $33$ | $33$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{11}$ | $33$ | $33$ | $33$ | $33$ | $33$ | $33$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 331 | Data not computed | ||||||