# SageMath code for working with number field 33.33.36584611296554742180833097810429342639777502523008874222975105176339833601.1 # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: x = polygen(QQ); K. = NumberField(x^33 - x^32 - 96*x^31 + 217*x^30 + 3795*x^29 - 13403*x^28 - 74197*x^27 + 394231*x^26 + 599821*x^25 - 6350170*x^24 + 2832807*x^23 + 56803105*x^22 - 104532088*x^21 - 244229488*x^20 + 932758015*x^19 + 5618002*x^18 - 3890173018*x^17 + 4529747891*x^16 + 6495127532*x^15 - 18110944809*x^14 + 4574986912*x^13 + 26694143816*x^12 - 29645825157*x^11 - 6037403432*x^10 + 30417132332*x^9 - 15468969217*x^8 - 6737165737*x^7 + 8515927088*x^6 - 1017730658*x^5 - 1409177433*x^4 + 395068072*x^3 + 75602260*x^2 - 21210003*x - 2947097) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Autmorphisms: K.automorphisms() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Analytic class number formula: # self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K. = NumberField(x^33 - x^32 - 96*x^31 + 217*x^30 + 3795*x^29 - 13403*x^28 - 74197*x^27 + 394231*x^26 + 599821*x^25 - 6350170*x^24 + 2832807*x^23 + 56803105*x^22 - 104532088*x^21 - 244229488*x^20 + 932758015*x^19 + 5618002*x^18 - 3890173018*x^17 + 4529747891*x^16 + 6495127532*x^15 - 18110944809*x^14 + 4574986912*x^13 + 26694143816*x^12 - 29645825157*x^11 - 6037403432*x^10 + 30417132332*x^9 - 15468969217*x^8 - 6737165737*x^7 + 8515927088*x^6 - 1017730658*x^5 - 1409177433*x^4 + 395068072*x^3 + 75602260*x^2 - 21210003*x - 2947097) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK)))) # Intermediate fields: K.subfields()[1:-1] # Galois group: K.galois_group(type='pari') # Frobenius cycle types: # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]