Normalized defining polynomial
\( x^{33} - 198 x^{31} - 88 x^{30} + 16500 x^{29} + 12672 x^{28} - 767778 x^{27} - 757746 x^{26} + 22354497 x^{25} + 25239423 x^{24} - 431474868 x^{23} - 525348783 x^{22} + 5687836869 x^{21} + 7225040196 x^{20} - 51815376558 x^{19} - 67410260049 x^{18} + 325326665763 x^{17} + 429771174723 x^{16} - 1383513593077 x^{15} - 1855194763851 x^{14} + 3841738634745 x^{13} + 5275486801024 x^{12} - 6494206038078 x^{11} - 9369700675533 x^{10} + 5765703181788 x^{9} + 9428309081928 x^{8} - 1695923602263 x^{7} - 4455495029205 x^{6} - 352916325432 x^{5} + 665621580294 x^{4} + 84512905389 x^{3} - 28282285053 x^{2} - 3992061348 x - 126686997 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{9} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{9} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{9} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{9} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{11} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{9} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{12} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{9} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4}$, $\frac{1}{9} a^{13} + \frac{1}{3} a^{8} - \frac{1}{9} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3}$, $\frac{1}{27} a^{15} + \frac{1}{27} a^{13} + \frac{1}{27} a^{11} - \frac{1}{27} a^{9} - \frac{1}{3} a^{8} - \frac{1}{27} a^{7} - \frac{4}{9} a^{6} - \frac{10}{27} a^{5} + \frac{2}{9} a^{4} - \frac{1}{3} a^{3} - \frac{1}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{27} a^{16} + \frac{1}{27} a^{14} + \frac{1}{27} a^{12} - \frac{1}{27} a^{10} - \frac{1}{27} a^{8} - \frac{4}{9} a^{7} - \frac{10}{27} a^{6} + \frac{2}{9} a^{5} - \frac{1}{3} a^{4} - \frac{4}{9} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{27} a^{17} + \frac{1}{27} a^{11} + \frac{2}{9} a^{8} - \frac{2}{27} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{2}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{81} a^{18} + \frac{1}{27} a^{14} + \frac{4}{81} a^{12} + \frac{1}{27} a^{9} + \frac{2}{27} a^{8} - \frac{1}{3} a^{7} - \frac{23}{81} a^{6} - \frac{1}{9} a^{5} + \frac{4}{9} a^{4} - \frac{7}{27} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{2}{9}$, $\frac{1}{81} a^{19} + \frac{1}{81} a^{13} - \frac{1}{27} a^{11} + \frac{1}{27} a^{10} + \frac{7}{81} a^{7} + \frac{13}{27} a^{5} + \frac{5}{27} a^{4} + \frac{1}{9} a^{3} + \frac{4}{9} a^{2} + \frac{1}{9} a + \frac{1}{3}$, $\frac{1}{243} a^{20} - \frac{1}{243} a^{19} + \frac{1}{81} a^{17} + \frac{1}{243} a^{14} + \frac{8}{243} a^{13} - \frac{4}{81} a^{12} - \frac{1}{27} a^{11} - \frac{4}{81} a^{10} - \frac{83}{243} a^{8} - \frac{43}{243} a^{7} - \frac{2}{81} a^{6} - \frac{31}{81} a^{5} + \frac{10}{81} a^{4} - \frac{4}{9} a^{3} - \frac{8}{27} a^{2} - \frac{1}{27} a + \frac{2}{9}$, $\frac{1}{243} a^{21} - \frac{1}{243} a^{19} + \frac{1}{81} a^{17} + \frac{1}{243} a^{15} - \frac{4}{243} a^{13} - \frac{2}{81} a^{12} + \frac{2}{81} a^{11} - \frac{4}{81} a^{10} - \frac{11}{243} a^{9} + \frac{2}{27} a^{8} - \frac{49}{243} a^{7} + \frac{8}{81} a^{6} + \frac{2}{27} a^{5} + \frac{19}{81} a^{4} - \frac{4}{27} a^{3} - \frac{1}{3} a^{2} - \frac{13}{27} a + \frac{4}{9}$, $\frac{1}{243} a^{22} - \frac{1}{243} a^{19} + \frac{1}{81} a^{17} + \frac{1}{243} a^{16} - \frac{4}{81} a^{14} + \frac{2}{243} a^{13} + \frac{1}{27} a^{12} + \frac{2}{81} a^{11} + \frac{4}{243} a^{10} + \frac{1}{27} a^{9} - \frac{23}{81} a^{8} + \frac{62}{243} a^{7} - \frac{1}{9} a^{6} - \frac{13}{27} a^{5} + \frac{34}{81} a^{4} + \frac{13}{27} a^{3} + \frac{2}{9} a^{2} + \frac{11}{27} a + \frac{4}{9}$, $\frac{1}{243} a^{23} - \frac{1}{243} a^{19} + \frac{4}{243} a^{17} - \frac{1}{81} a^{15} - \frac{2}{81} a^{14} - \frac{1}{243} a^{13} + \frac{1}{27} a^{12} + \frac{4}{243} a^{11} - \frac{1}{81} a^{10} - \frac{2}{81} a^{9} - \frac{40}{81} a^{8} + \frac{110}{243} a^{7} - \frac{1}{9} a^{6} + \frac{4}{9} a^{5} + \frac{4}{81} a^{4} + \frac{1}{27} a^{3} + \frac{1}{3} a^{2} + \frac{11}{27} a + \frac{4}{9}$, $\frac{1}{6561} a^{24} - \frac{1}{729} a^{23} - \frac{2}{2187} a^{22} - \frac{10}{6561} a^{21} + \frac{1}{729} a^{20} - \frac{5}{2187} a^{19} - \frac{2}{6561} a^{18} + \frac{2}{243} a^{17} + \frac{1}{243} a^{16} + \frac{65}{6561} a^{15} - \frac{34}{729} a^{14} + \frac{32}{2187} a^{13} - \frac{98}{6561} a^{12} + \frac{1}{243} a^{11} + \frac{56}{2187} a^{10} - \frac{136}{6561} a^{9} - \frac{152}{729} a^{8} + \frac{56}{243} a^{7} + \frac{134}{729} a^{6} + \frac{11}{243} a^{5} + \frac{38}{81} a^{4} + \frac{37}{81} a^{3} + \frac{28}{81} a^{2} + \frac{14}{81} a + \frac{116}{243}$, $\frac{1}{6561} a^{25} - \frac{2}{2187} a^{23} - \frac{10}{6561} a^{22} + \frac{4}{2187} a^{20} + \frac{25}{6561} a^{19} + \frac{4}{729} a^{18} + \frac{4}{243} a^{17} + \frac{119}{6561} a^{16} + \frac{13}{729} a^{15} + \frac{95}{2187} a^{14} + \frac{361}{6561} a^{13} + \frac{31}{729} a^{12} + \frac{29}{2187} a^{11} + \frac{53}{6561} a^{10} + \frac{2}{81} a^{9} - \frac{25}{81} a^{8} - \frac{1}{729} a^{7} - \frac{115}{243} a^{6} - \frac{8}{81} a^{5} - \frac{38}{81} a^{4} - \frac{29}{81} a^{3} - \frac{1}{81} a^{2} - \frac{46}{243} a + \frac{2}{27}$, $\frac{1}{6561} a^{26} - \frac{10}{6561} a^{23} - \frac{1}{729} a^{22} + \frac{2}{2187} a^{21} - \frac{2}{6561} a^{20} - \frac{1}{243} a^{19} + \frac{5}{2187} a^{18} - \frac{70}{6561} a^{17} + \frac{7}{729} a^{16} + \frac{1}{81} a^{15} + \frac{226}{6561} a^{14} + \frac{35}{729} a^{13} + \frac{103}{2187} a^{12} + \frac{188}{6561} a^{11} - \frac{29}{729} a^{10} - \frac{119}{2187} a^{9} - \frac{364}{729} a^{8} + \frac{2}{81} a^{7} - \frac{44}{243} a^{6} - \frac{13}{81} a^{5} - \frac{8}{27} a^{4} + \frac{2}{81} a^{3} + \frac{80}{243} a^{2} - \frac{11}{27} a - \frac{29}{81}$, $\frac{1}{6561} a^{27} + \frac{1}{729} a^{23} + \frac{2}{2187} a^{21} + \frac{1}{729} a^{20} - \frac{1}{243} a^{19} - \frac{1}{729} a^{18} - \frac{11}{729} a^{17} - \frac{1}{81} a^{16} - \frac{23}{2187} a^{15} + \frac{4}{729} a^{14} - \frac{25}{729} a^{12} + \frac{22}{729} a^{11} - \frac{2}{81} a^{10} + \frac{89}{6561} a^{9} - \frac{104}{729} a^{8} + \frac{1}{243} a^{7} + \frac{260}{729} a^{6} - \frac{64}{243} a^{5} + \frac{8}{27} a^{4} - \frac{16}{243} a^{3} - \frac{38}{81} a^{2} + \frac{2}{27} a - \frac{109}{243}$, $\frac{1}{19683} a^{28} + \frac{1}{19683} a^{27} + \frac{1}{19683} a^{25} + \frac{1}{19683} a^{24} - \frac{11}{6561} a^{23} - \frac{10}{19683} a^{22} + \frac{14}{19683} a^{21} - \frac{8}{6561} a^{20} - \frac{107}{19683} a^{19} + \frac{106}{19683} a^{18} + \frac{4}{2187} a^{17} + \frac{185}{19683} a^{16} + \frac{293}{19683} a^{15} - \frac{4}{6561} a^{14} + \frac{934}{19683} a^{13} + \frac{550}{19683} a^{12} + \frac{122}{6561} a^{11} + \frac{1012}{19683} a^{10} - \frac{731}{19683} a^{9} - \frac{373}{2187} a^{8} - \frac{530}{2187} a^{7} + \frac{199}{2187} a^{6} + \frac{223}{729} a^{5} + \frac{89}{729} a^{4} + \frac{227}{729} a^{3} - \frac{8}{243} a^{2} - \frac{221}{729} a - \frac{209}{729}$, $\frac{1}{19683} a^{29} - \frac{1}{19683} a^{27} + \frac{1}{19683} a^{26} - \frac{1}{19683} a^{24} - \frac{31}{19683} a^{23} - \frac{4}{6561} a^{22} + \frac{37}{19683} a^{21} - \frac{29}{19683} a^{20} - \frac{40}{6561} a^{19} + \frac{107}{19683} a^{18} + \frac{230}{19683} a^{17} - \frac{11}{729} a^{16} + \frac{58}{19683} a^{15} - \frac{404}{19683} a^{14} + \frac{253}{6561} a^{13} + \frac{227}{19683} a^{12} + \frac{808}{19683} a^{11} + \frac{349}{6561} a^{10} - \frac{634}{19683} a^{9} + \frac{38}{2187} a^{8} + \frac{1}{27} a^{7} - \frac{886}{2187} a^{6} - \frac{338}{729} a^{5} - \frac{101}{243} a^{4} - \frac{98}{729} a^{3} - \frac{341}{729} a^{2} + \frac{79}{243} a - \frac{175}{729}$, $\frac{1}{2095865523} a^{30} + \frac{3365}{2095865523} a^{29} - \frac{29200}{2095865523} a^{28} - \frac{26626}{2095865523} a^{27} - \frac{71554}{2095865523} a^{26} - \frac{47293}{2095865523} a^{25} + \frac{2014}{232873947} a^{24} + \frac{4241191}{2095865523} a^{23} + \frac{644410}{2095865523} a^{22} - \frac{548441}{698621841} a^{21} + \frac{749012}{2095865523} a^{20} + \frac{7052072}{2095865523} a^{19} - \frac{173680}{77624649} a^{18} - \frac{38185472}{2095865523} a^{17} + \frac{11473237}{2095865523} a^{16} - \frac{11820473}{698621841} a^{15} - \frac{5950513}{2095865523} a^{14} - \frac{52191556}{2095865523} a^{13} - \frac{66791449}{2095865523} a^{12} - \frac{77064454}{2095865523} a^{11} + \frac{9344468}{2095865523} a^{10} + \frac{30587992}{2095865523} a^{9} - \frac{23200130}{232873947} a^{8} + \frac{72556115}{232873947} a^{7} - \frac{61027757}{232873947} a^{6} + \frac{7518584}{77624649} a^{5} + \frac{14264893}{77624649} a^{4} - \frac{1798729}{25874883} a^{3} - \frac{3117280}{77624649} a^{2} - \frac{34970740}{77624649} a + \frac{4636897}{77624649}$, $\frac{1}{563787825687} a^{31} - \frac{5}{187929275229} a^{30} + \frac{590513}{62643091743} a^{29} + \frac{9864220}{563787825687} a^{28} - \frac{25501078}{563787825687} a^{27} + \frac{12276434}{187929275229} a^{26} + \frac{37841240}{563787825687} a^{25} + \frac{20493479}{563787825687} a^{24} + \frac{122204420}{62643091743} a^{23} - \frac{237218240}{563787825687} a^{22} - \frac{464883848}{563787825687} a^{21} - \frac{97624403}{187929275229} a^{20} - \frac{221396743}{563787825687} a^{19} - \frac{1863675229}{563787825687} a^{18} + \frac{858866005}{187929275229} a^{17} + \frac{9379682374}{563787825687} a^{16} - \frac{2727707417}{563787825687} a^{15} - \frac{401151350}{20881030581} a^{14} - \frac{22399516847}{563787825687} a^{13} + \frac{9238683149}{563787825687} a^{12} - \frac{9532050418}{187929275229} a^{11} + \frac{3901219999}{187929275229} a^{10} + \frac{28534248593}{563787825687} a^{9} + \frac{1587458986}{62643091743} a^{8} - \frac{9678516452}{20881030581} a^{7} - \frac{19331753500}{62643091743} a^{6} + \frac{2247751889}{20881030581} a^{5} - \frac{3693894200}{20881030581} a^{4} + \frac{5873976604}{20881030581} a^{3} + \frac{124604624}{257790501} a^{2} + \frac{2872434358}{6960343527} a + \frac{10051607006}{20881030581}$, $\frac{1}{820050395878279940777782169065852242353810646864369223389568949087112348486641279316948374710863985762862054409234322382935287} a^{32} - \frac{211822085346461810319913728301392945665325240752487789821859784590372611021810846973242602807756733821272924795635}{273350131959426646925927389688617414117936882288123074463189649695704116162213759772316124903621328587620684803078107460978429} a^{31} - \frac{189000889199499419292246389439901272395913011868332370820971641605446761620008181240634970005313481904659447677377990}{820050395878279940777782169065852242353810646864369223389568949087112348486641279316948374710863985762862054409234322382935287} a^{30} + \frac{14044171239425250655836261494151314268087947071926556538332584111181023149952438212511154152787714216396209847252692677995}{820050395878279940777782169065852242353810646864369223389568949087112348486641279316948374710863985762862054409234322382935287} a^{29} + \frac{3427423372595727000128959568574247242653106820645424433997628586536347555006482920883567379968074365766122053541067493617}{273350131959426646925927389688617414117936882288123074463189649695704116162213759772316124903621328587620684803078107460978429} a^{28} + \frac{17809425155440266751542346045084822729112600397565302282490464778467324434798866877183529094361685758215863661867803964273}{273350131959426646925927389688617414117936882288123074463189649695704116162213759772316124903621328587620684803078107460978429} a^{27} + \frac{51565269341616110554269700092556759790289487405381181329061055156340298747088665892320607133121074562059126397100374537549}{820050395878279940777782169065852242353810646864369223389568949087112348486641279316948374710863985762862054409234322382935287} a^{26} - \frac{846467584520271063443206630692417966119217948911874049497111575087299744315028010427535103821533410170684888274898047743}{30372236884380738547325265520957490457548542476458119384798849966189346240245973308035124989291258731957853867008678606775381} a^{25} + \frac{32462233397183980217318225545953664298709045710521300301614386424399242101723884347229475297474672577040333541979644304019}{820050395878279940777782169065852242353810646864369223389568949087112348486641279316948374710863985762862054409234322382935287} a^{24} - \frac{1445419073660658158062875641292164679357499428256921041448219791850604946233349256410405517333526644859300260145630011015277}{820050395878279940777782169065852242353810646864369223389568949087112348486641279316948374710863985762862054409234322382935287} a^{23} + \frac{101325812524665418916516717085164509169016511887980395007443263927435729540936961651072263508656933495621633498882482719939}{273350131959426646925927389688617414117936882288123074463189649695704116162213759772316124903621328587620684803078107460978429} a^{22} + \frac{305105934581100527516127563630574642400882326080846833724525154604069373727337595706285511730938583614142327261770501939238}{820050395878279940777782169065852242353810646864369223389568949087112348486641279316948374710863985762862054409234322382935287} a^{21} + \frac{1521720624228445986445044308624980757072187696072535654799164012922057451827495557730212940633838323756070241982032886187680}{820050395878279940777782169065852242353810646864369223389568949087112348486641279316948374710863985762862054409234322382935287} a^{20} - \frac{245482833928964851444244309791640002135383101735490380554357996440748470392199291157266528758061123765550664190112619275169}{273350131959426646925927389688617414117936882288123074463189649695704116162213759772316124903621328587620684803078107460978429} a^{19} - \frac{3999328327803575200006936588453780591231959891889864024769549017791660412290195872154241648010113868515474642081569329767079}{820050395878279940777782169065852242353810646864369223389568949087112348486641279316948374710863985762862054409234322382935287} a^{18} + \frac{4263609255436131751609294563239210461697811283983196217874921950986631360947284883120875693387022249132243105758373130839300}{820050395878279940777782169065852242353810646864369223389568949087112348486641279316948374710863985762862054409234322382935287} a^{17} + \frac{1190584036418152114067481608839098763078627934208797334157030278776057986509673968210812165631657872969310056734182988562926}{91116710653142215641975796562872471372645627429374358154396549898568038720737919924105374967873776195873561601026035820326143} a^{16} - \frac{3432761442740412866579539799537394333901871487128934242901138410687726041573222919564194745365424807617423376505776494269190}{820050395878279940777782169065852242353810646864369223389568949087112348486641279316948374710863985762862054409234322382935287} a^{15} + \frac{7176495365835921182460881254399251018359078811654581879261458281403254555077909765537730752473681091267299782084373695381856}{820050395878279940777782169065852242353810646864369223389568949087112348486641279316948374710863985762862054409234322382935287} a^{14} + \frac{8101992897440594885561862800786713010766897153059672579592491203521126556362847207272226417559275104428568634754674806311272}{273350131959426646925927389688617414117936882288123074463189649695704116162213759772316124903621328587620684803078107460978429} a^{13} - \frac{4208155576836073159818580361999773867613846751042247682981378508649176698856225843666479042002177272083060197461077070794905}{91116710653142215641975796562872471372645627429374358154396549898568038720737919924105374967873776195873561601026035820326143} a^{12} + \frac{11593449288224165200807789618605253823518083595932452461902513574236571002612131333788960768692866851246116074287584707742781}{273350131959426646925927389688617414117936882288123074463189649695704116162213759772316124903621328587620684803078107460978429} a^{11} - \frac{1490728766747050544673765700719636994012509519810837219119406550157352421880883810810780968874825165247282310578837395735970}{30372236884380738547325265520957490457548542476458119384798849966189346240245973308035124989291258731957853867008678606775381} a^{10} + \frac{9103934797983100096205234674290651007696890338939752112962036851720959696263202026600143692712924161193894302294099808654947}{820050395878279940777782169065852242353810646864369223389568949087112348486641279316948374710863985762862054409234322382935287} a^{9} - \frac{26872572382500947913581042998232469275233198142199897155552953832208474855234418557985992322634385273672874706367335042398334}{91116710653142215641975796562872471372645627429374358154396549898568038720737919924105374967873776195873561601026035820326143} a^{8} + \frac{4934441527878973152337382522441088919366014944928645029408389200836506107851680924266976657421599493411478645185429256300745}{30372236884380738547325265520957490457548542476458119384798849966189346240245973308035124989291258731957853867008678606775381} a^{7} - \frac{27728433390977616257551506972014031686628091583789482979784867121194160368884163966971525348804081933753599970468223324800083}{91116710653142215641975796562872471372645627429374358154396549898568038720737919924105374967873776195873561601026035820326143} a^{6} + \frac{1737551468831341232898990914033221171115809101440944256293035469471206612785365643088045421619157578132053976086586128499758}{10124078961460246182441755173652496819182847492152706461599616655396448746748657769345041663097086243985951289002892868925127} a^{5} + \frac{3759287269394695673536174924075466618116415663136452516101220910128448415750570298048225532199602080236175975465332474823449}{10124078961460246182441755173652496819182847492152706461599616655396448746748657769345041663097086243985951289002892868925127} a^{4} - \frac{2400945483563263933404262390733256991485347235696142897752400295923237016717025480798789749579947705050939531363641210233642}{30372236884380738547325265520957490457548542476458119384798849966189346240245973308035124989291258731957853867008678606775381} a^{3} - \frac{2276854075132115121081549438299287401486077973905671203511523110240041844971008909660363446961678689900847771985905402339020}{10124078961460246182441755173652496819182847492152706461599616655396448746748657769345041663097086243985951289002892868925127} a^{2} + \frac{711824207102893532297600980971540153236539310914731198063753695406548684089951299793655214743617231062400396720416321878033}{3374692987153415394147251724550832273060949164050902153866538885132149582249552589781680554365695414661983763000964289641709} a - \frac{6602612723386511249620952760607339393819982610534348586475957462440356607514351271594931530641965989592448098115079774518779}{30372236884380738547325265520957490457548542476458119384798849966189346240245973308035124989291258731957853867008678606775381}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $32$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1383473472152591500000000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 33 |
| The 33 conjugacy class representatives for $C_{33}$ |
| Character table for $C_{33}$ is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 11.11.672749994932560009201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $33$ | R | $33$ | $33$ | R | $33$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{3}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{3}$ | $33$ | $33$ | $33$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{3}$ | $33$ | $33$ | $33$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{3}$ | $33$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 11 | Data not computed | ||||||