Normalized defining polynomial
\( x^{33} - x^{32} - 52 x^{31} + 47 x^{30} + 1159 x^{29} - 945 x^{28} - 14589 x^{27} + 10741 x^{26} + 115099 x^{25} - 76770 x^{24} - 597580 x^{23} + 362822 x^{22} + 2088771 x^{21} - 1160546 x^{20} - 4956062 x^{19} + 2531215 x^{18} + 7980244 x^{17} - 3753538 x^{16} - 8674935 x^{15} + 3750773 x^{14} + 6304834 x^{13} - 2497276 x^{12} - 3006793 x^{11} + 1087323 x^{10} + 908614 x^{9} - 298518 x^{8} - 163557 x^{7} + 48112 x^{6} + 15777 x^{5} - 3955 x^{4} - 691 x^{3} + 126 x^{2} + 12 x - 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $\frac{1}{461} a^{31} + \frac{83}{461} a^{30} + \frac{141}{461} a^{29} + \frac{129}{461} a^{28} - \frac{177}{461} a^{27} - \frac{113}{461} a^{26} - \frac{209}{461} a^{25} - \frac{55}{461} a^{24} - \frac{3}{461} a^{23} - \frac{139}{461} a^{22} - \frac{222}{461} a^{21} - \frac{196}{461} a^{20} - \frac{115}{461} a^{19} - \frac{106}{461} a^{18} + \frac{38}{461} a^{17} + \frac{165}{461} a^{16} - \frac{225}{461} a^{14} + \frac{164}{461} a^{13} - \frac{151}{461} a^{12} + \frac{137}{461} a^{11} + \frac{153}{461} a^{10} - \frac{15}{461} a^{9} + \frac{10}{461} a^{8} + \frac{166}{461} a^{7} - \frac{160}{461} a^{6} + \frac{14}{461} a^{5} - \frac{132}{461} a^{4} + \frac{139}{461} a^{3} - \frac{89}{461} a^{2} + \frac{134}{461} a + \frac{200}{461}$, $\frac{1}{31395026281391975704557151272424583190591105677389094293} a^{32} - \frac{26641326808036072616049631227199038607447162638377869}{31395026281391975704557151272424583190591105677389094293} a^{31} - \frac{12394667625603363546226793672614844815981920740946199780}{31395026281391975704557151272424583190591105677389094293} a^{30} - \frac{9293397518544433009949847783767558410910687354746423199}{31395026281391975704557151272424583190591105677389094293} a^{29} + \frac{10716673645843509721343661028264448299963543435839704740}{31395026281391975704557151272424583190591105677389094293} a^{28} - \frac{2822536360795372717826849460698247405836227652781192025}{31395026281391975704557151272424583190591105677389094293} a^{27} + \frac{5083785012421412648559570904931865107270857925032766313}{31395026281391975704557151272424583190591105677389094293} a^{26} - \frac{10049864308704031228147647934193061176826257350333620312}{31395026281391975704557151272424583190591105677389094293} a^{25} + \frac{13654837512647334999052004398196497036981817619893144051}{31395026281391975704557151272424583190591105677389094293} a^{24} - \frac{2390685812685780397522832062865741183236718202271663116}{31395026281391975704557151272424583190591105677389094293} a^{23} - \frac{4652663215676084163757583408058855907902012924679103850}{31395026281391975704557151272424583190591105677389094293} a^{22} - \frac{7143855900703482539674674793874529354623152387383061784}{31395026281391975704557151272424583190591105677389094293} a^{21} + \frac{14718205999005488005461225459310857548507984435615394631}{31395026281391975704557151272424583190591105677389094293} a^{20} - \frac{15120621614547424115904312714180677415092768673595795353}{31395026281391975704557151272424583190591105677389094293} a^{19} + \frac{12974746979603050541343265461226947263334458320301317475}{31395026281391975704557151272424583190591105677389094293} a^{18} + \frac{8575196174630180370096381350798907522749009498376244847}{31395026281391975704557151272424583190591105677389094293} a^{17} + \frac{2072303481854416066564726447508029268418689264453124}{68102009287184329077130479983567425576119535091950313} a^{16} - \frac{12462939514904066101296816267378891132528714668459599876}{31395026281391975704557151272424583190591105677389094293} a^{15} - \frac{3669813908921967893511403232549472706608316644832168303}{31395026281391975704557151272424583190591105677389094293} a^{14} + \frac{13293398415629190125073647914263350063814137073049200259}{31395026281391975704557151272424583190591105677389094293} a^{13} + \frac{5322506342122152571590422454843116060573771433122128065}{31395026281391975704557151272424583190591105677389094293} a^{12} - \frac{13637079123184912959171279410590323062650045924299630677}{31395026281391975704557151272424583190591105677389094293} a^{11} - \frac{5914787815788135750450793526810150039918498731293829347}{31395026281391975704557151272424583190591105677389094293} a^{10} - \frac{5160955925388286885532997087999528558369929699508787}{48825857358307893786247513642962026734978391411180551} a^{9} + \frac{13334565860509878707763189729762633364366826013169022572}{31395026281391975704557151272424583190591105677389094293} a^{8} + \frac{6778690865892286579757143248581348899540790003281995884}{31395026281391975704557151272424583190591105677389094293} a^{7} - \frac{2018886506653908208362999431905507472001013115806664163}{31395026281391975704557151272424583190591105677389094293} a^{6} - \frac{10889302049371313486630059451555245962703757131876887469}{31395026281391975704557151272424583190591105677389094293} a^{5} - \frac{7685361073419045545662686121602625718686102674650395685}{31395026281391975704557151272424583190591105677389094293} a^{4} + \frac{9077328101109960918558630536765414991800034601564046768}{31395026281391975704557151272424583190591105677389094293} a^{3} + \frac{15167723390332439012558712650380335723095088667114394662}{31395026281391975704557151272424583190591105677389094293} a^{2} + \frac{974297440055815695388646681027201204182409299874924670}{31395026281391975704557151272424583190591105677389094293} a + \frac{7254656725807878303149125086224817068514570854873346}{68102009287184329077130479983567425576119535091950313}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $32$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15716532070591353000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 33 |
| The 33 conjugacy class representatives for $C_{33}$ |
| Character table for $C_{33}$ is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $33$ | $33$ | $33$ | R | $33$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{3}$ | $33$ | $33$ | R | ${\href{/LocalNumberField/29.11.0.1}{11} }^{3}$ | $33$ | $33$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{3}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{11}$ | $33$ | $33$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 23 | Data not computed | ||||||