Normalized defining polynomial
\( x^{33} - x^{32} - 32 x^{31} + 31 x^{30} + 465 x^{29} - 435 x^{28} - 4060 x^{27} + 3654 x^{26} + 23751 x^{25} - 20475 x^{24} - 98280 x^{23} + 80730 x^{22} + 296010 x^{21} - 230230 x^{20} - 657800 x^{19} + 480700 x^{18} + 1081575 x^{17} - 735471 x^{16} - 1307504 x^{15} + 817190 x^{14} + 1144066 x^{13} - 646646 x^{12} - 705432 x^{11} + 352716 x^{10} + 293930 x^{9} - 125970 x^{8} - 77520 x^{7} + 27132 x^{6} + 11628 x^{5} - 3060 x^{4} - 816 x^{3} + 136 x^{2} + 17 x - 1 \)
Invariants
| Degree: | $33$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[33, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(27189028279553414235049966267283185807800188603627566700161=67^{32}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(67\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{67}(1,·)$, $\chi_{67}(4,·)$, $\chi_{67}(6,·)$, $\chi_{67}(9,·)$, $\chi_{67}(10,·)$, $\chi_{67}(14,·)$, $\chi_{67}(15,·)$, $\chi_{67}(16,·)$, $\chi_{67}(17,·)$, $\chi_{67}(19,·)$, $\chi_{67}(21,·)$, $\chi_{67}(22,·)$, $\chi_{67}(23,·)$, $\chi_{67}(24,·)$, $\chi_{67}(25,·)$, $\chi_{67}(26,·)$, $\chi_{67}(29,·)$, $\chi_{67}(33,·)$, $\chi_{67}(35,·)$, $\chi_{67}(36,·)$, $\chi_{67}(37,·)$, $\chi_{67}(39,·)$, $\chi_{67}(40,·)$, $\chi_{67}(47,·)$, $\chi_{67}(49,·)$, $\chi_{67}(54,·)$, $\chi_{67}(55,·)$, $\chi_{67}(56,·)$, $\chi_{67}(59,·)$, $\chi_{67}(60,·)$, $\chi_{67}(62,·)$, $\chi_{67}(64,·)$, $\chi_{67}(65,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $32$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3985748844865106400 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 33 |
| The 33 conjugacy class representatives for $C_{33}$ |
| Character table for $C_{33}$ is not computed |
Intermediate fields
| 3.3.4489.1, 11.11.1822837804551761449.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $33$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{3}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{3}$ | $33$ | $33$ | $33$ | $33$ | $33$ | $33$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{11}$ | $33$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{11}$ | $33$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{3}$ | $33$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{3}$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{3}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 67 | Data not computed | ||||||