Normalized defining polynomial
\( x^{33} - 8 x^{32} - 86 x^{31} + 690 x^{30} + 3527 x^{29} - 25876 x^{28} - 92162 x^{27} + 549745 x^{26} + 1676544 x^{25} - 7221169 x^{24} - 21518451 x^{23} + 59984529 x^{22} + 192193744 x^{21} - 307177110 x^{20} - 1170053321 x^{19} + 864215343 x^{18} + 4741699040 x^{17} - 637264044 x^{16} - 12404482875 x^{15} - 3656463713 x^{14} + 19997642137 x^{13} + 12376322490 x^{12} - 18399788371 x^{11} - 16849661483 x^{10} + 8289542908 x^{9} + 11391691466 x^{8} - 842642325 x^{7} - 3707258605 x^{6} - 522452271 x^{5} + 463178377 x^{4} + 128777001 x^{3} - 2389174 x^{2} - 1929880 x + 90889 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{29} a^{21} - \frac{8}{29} a^{20} - \frac{5}{29} a^{19} + \frac{10}{29} a^{18} - \frac{5}{29} a^{17} - \frac{2}{29} a^{16} + \frac{8}{29} a^{15} + \frac{4}{29} a^{13} + \frac{9}{29} a^{12} - \frac{3}{29} a^{11} + \frac{9}{29} a^{10} - \frac{5}{29} a^{9} - \frac{1}{29} a^{8} + \frac{6}{29} a^{7} + \frac{11}{29} a^{6} - \frac{13}{29} a^{5} + \frac{3}{29} a^{4} - \frac{13}{29} a^{3} - \frac{4}{29} a^{2} - \frac{4}{29} a + \frac{2}{29}$, $\frac{1}{29} a^{22} - \frac{11}{29} a^{20} - \frac{1}{29} a^{19} - \frac{12}{29} a^{18} - \frac{13}{29} a^{17} - \frac{8}{29} a^{16} + \frac{6}{29} a^{15} + \frac{4}{29} a^{14} + \frac{12}{29} a^{13} + \frac{11}{29} a^{12} + \frac{14}{29} a^{11} + \frac{9}{29} a^{10} - \frac{12}{29} a^{9} - \frac{2}{29} a^{8} + \frac{1}{29} a^{7} - \frac{12}{29} a^{6} - \frac{14}{29} a^{5} + \frac{11}{29} a^{4} + \frac{8}{29} a^{3} - \frac{7}{29} a^{2} - \frac{1}{29} a - \frac{13}{29}$, $\frac{1}{29} a^{23} - \frac{2}{29} a^{20} - \frac{9}{29} a^{19} + \frac{10}{29} a^{18} - \frac{5}{29} a^{17} + \frac{13}{29} a^{16} + \frac{5}{29} a^{15} + \frac{12}{29} a^{14} - \frac{3}{29} a^{13} - \frac{3}{29} a^{12} + \frac{5}{29} a^{11} + \frac{1}{29} a^{9} - \frac{10}{29} a^{8} - \frac{4}{29} a^{7} - \frac{9}{29} a^{6} + \frac{13}{29} a^{5} + \frac{12}{29} a^{4} - \frac{5}{29} a^{3} + \frac{13}{29} a^{2} + \frac{1}{29} a - \frac{7}{29}$, $\frac{1}{29} a^{24} + \frac{4}{29} a^{20} - \frac{14}{29} a^{18} + \frac{3}{29} a^{17} + \frac{1}{29} a^{16} - \frac{1}{29} a^{15} - \frac{3}{29} a^{14} + \frac{5}{29} a^{13} - \frac{6}{29} a^{12} - \frac{6}{29} a^{11} - \frac{10}{29} a^{10} + \frac{9}{29} a^{9} - \frac{6}{29} a^{8} + \frac{3}{29} a^{7} + \frac{6}{29} a^{6} - \frac{14}{29} a^{5} + \frac{1}{29} a^{4} - \frac{13}{29} a^{3} - \frac{7}{29} a^{2} + \frac{14}{29} a + \frac{4}{29}$, $\frac{1}{29} a^{25} + \frac{3}{29} a^{20} + \frac{6}{29} a^{19} - \frac{8}{29} a^{18} - \frac{8}{29} a^{17} + \frac{7}{29} a^{16} - \frac{6}{29} a^{15} + \frac{5}{29} a^{14} + \frac{7}{29} a^{13} - \frac{13}{29} a^{12} + \frac{2}{29} a^{11} + \frac{2}{29} a^{10} + \frac{14}{29} a^{9} + \frac{7}{29} a^{8} + \frac{11}{29} a^{7} - \frac{5}{29} a^{5} + \frac{4}{29} a^{4} - \frac{13}{29} a^{3} + \frac{1}{29} a^{2} - \frac{9}{29} a - \frac{8}{29}$, $\frac{1}{29} a^{26} + \frac{1}{29} a^{20} + \frac{7}{29} a^{19} - \frac{9}{29} a^{18} - \frac{7}{29} a^{17} + \frac{10}{29} a^{15} + \frac{7}{29} a^{14} + \frac{4}{29} a^{13} + \frac{4}{29} a^{12} + \frac{11}{29} a^{11} - \frac{13}{29} a^{10} - \frac{7}{29} a^{9} + \frac{14}{29} a^{8} + \frac{11}{29} a^{7} - \frac{9}{29} a^{6} + \frac{14}{29} a^{5} + \frac{7}{29} a^{4} + \frac{11}{29} a^{3} + \frac{3}{29} a^{2} + \frac{4}{29} a - \frac{6}{29}$, $\frac{1}{29} a^{27} - \frac{14}{29} a^{20} - \frac{4}{29} a^{19} + \frac{12}{29} a^{18} + \frac{5}{29} a^{17} + \frac{12}{29} a^{16} - \frac{1}{29} a^{15} + \frac{4}{29} a^{14} + \frac{2}{29} a^{12} - \frac{10}{29} a^{11} + \frac{13}{29} a^{10} - \frac{10}{29} a^{9} + \frac{12}{29} a^{8} + \frac{14}{29} a^{7} + \frac{3}{29} a^{6} - \frac{9}{29} a^{5} + \frac{8}{29} a^{4} - \frac{13}{29} a^{3} + \frac{8}{29} a^{2} - \frac{2}{29} a - \frac{2}{29}$, $\frac{1}{29} a^{28} - \frac{1}{29}$, $\frac{1}{29} a^{29} - \frac{1}{29} a$, $\frac{1}{7436963} a^{30} - \frac{40018}{7436963} a^{29} + \frac{19632}{7436963} a^{28} - \frac{110131}{7436963} a^{27} - \frac{12410}{7436963} a^{26} + \frac{71590}{7436963} a^{25} + \frac{76491}{7436963} a^{24} + \frac{85961}{7436963} a^{23} - \frac{3082}{256447} a^{22} - \frac{3264}{7436963} a^{21} + \frac{290295}{7436963} a^{20} - \frac{1060069}{7436963} a^{19} - \frac{2707658}{7436963} a^{18} + \frac{2148906}{7436963} a^{17} - \frac{3439636}{7436963} a^{16} + \frac{127496}{7436963} a^{15} + \frac{1234945}{7436963} a^{14} + \frac{5}{37} a^{13} + \frac{860104}{7436963} a^{12} + \frac{61644}{256447} a^{11} + \frac{3228921}{7436963} a^{10} - \frac{2983870}{7436963} a^{9} + \frac{3652868}{7436963} a^{8} - \frac{3629386}{7436963} a^{7} + \frac{1550764}{7436963} a^{6} - \frac{2858496}{7436963} a^{5} + \frac{2742473}{7436963} a^{4} + \frac{56530}{256447} a^{3} + \frac{462954}{7436963} a^{2} + \frac{2465172}{7436963} a + \frac{1889497}{7436963}$, $\frac{1}{721385411} a^{31} + \frac{46}{721385411} a^{30} + \frac{417177}{24875359} a^{29} + \frac{3237179}{721385411} a^{28} + \frac{10897062}{721385411} a^{27} - \frac{6795986}{721385411} a^{26} - \frac{9333536}{721385411} a^{25} + \frac{203154}{19496903} a^{24} - \frac{6385812}{721385411} a^{23} - \frac{4690041}{721385411} a^{22} - \frac{5588912}{721385411} a^{21} - \frac{44661523}{721385411} a^{20} - \frac{242902349}{721385411} a^{19} + \frac{283763070}{721385411} a^{18} - \frac{275120971}{721385411} a^{17} + \frac{172012437}{721385411} a^{16} + \frac{1402583}{3018349} a^{15} + \frac{84354146}{721385411} a^{14} - \frac{56951367}{721385411} a^{13} - \frac{327836347}{721385411} a^{12} + \frac{231630514}{721385411} a^{11} + \frac{236108763}{721385411} a^{10} - \frac{297850070}{721385411} a^{9} - \frac{268696651}{721385411} a^{8} - \frac{10273897}{24875359} a^{7} + \frac{275524258}{721385411} a^{6} + \frac{279484067}{721385411} a^{5} + \frac{50598316}{721385411} a^{4} + \frac{38726279}{721385411} a^{3} + \frac{270968515}{721385411} a^{2} - \frac{15305213}{721385411} a - \frac{2279339}{7436963}$, $\frac{1}{28984286034773570804410892996798705285512291929172742348302810749783673504341077389452764891783312031236177} a^{32} - \frac{5695552672365422786650885919957576035254271146644755039895901266365073791533495614128545571660599}{28984286034773570804410892996798705285512291929172742348302810749783673504341077389452764891783312031236177} a^{31} + \frac{1483291090227873719017308254505112377735370552572393456776554315693724890520438986089219885974333824}{28984286034773570804410892996798705285512291929172742348302810749783673504341077389452764891783312031236177} a^{30} + \frac{402085909578855758887427829878690662739172006305792169422821510708325981858552862342819824908702409702067}{28984286034773570804410892996798705285512291929172742348302810749783673504341077389452764891783312031236177} a^{29} + \frac{379373592008178180440034369127637972034987854873965843155630828266881937816884213697204490621670842721490}{28984286034773570804410892996798705285512291929172742348302810749783673504341077389452764891783312031236177} a^{28} + \frac{63453323808487942844850179037033085104536937426336385382486899025158842748331209364848824666641463615332}{28984286034773570804410892996798705285512291929172742348302810749783673504341077389452764891783312031236177} a^{27} + \frac{200708606174439824517248147530471977337010059832670142960377993060944020083391735793180019016037757135323}{28984286034773570804410892996798705285512291929172742348302810749783673504341077389452764891783312031236177} a^{26} - \frac{205992970942112683570842078870065127208023594719349411661120433543796267560933265291595964010841255315748}{28984286034773570804410892996798705285512291929172742348302810749783673504341077389452764891783312031236177} a^{25} + \frac{337717118661868277686332007262332576427960440427961715347307697822901846461228471647069396976262544743997}{28984286034773570804410892996798705285512291929172742348302810749783673504341077389452764891783312031236177} a^{24} + \frac{423339439978826125060391863491164634128016954217760763746839734275240612991906152671609488730585680529805}{28984286034773570804410892996798705285512291929172742348302810749783673504341077389452764891783312031236177} a^{23} - \frac{253665925182230560892815956259665894916411608484413623228617386681411917995260732004847138135909449710116}{28984286034773570804410892996798705285512291929172742348302810749783673504341077389452764891783312031236177} a^{22} - \frac{43082532093950257470016120901315476128437612981252992639971360147613739608767786684555641619231189635269}{28984286034773570804410892996798705285512291929172742348302810749783673504341077389452764891783312031236177} a^{21} + \frac{3094925776283896582559815656580337198775329134064028852866790505116809303631421280261063471817669564384716}{28984286034773570804410892996798705285512291929172742348302810749783673504341077389452764891783312031236177} a^{20} + \frac{4397689509473345861856183722394204679124535199954212508399347788198112905747382116145158053587479011091560}{28984286034773570804410892996798705285512291929172742348302810749783673504341077389452764891783312031236177} a^{19} + \frac{49734227059414946728586800703715167089541003992006191833655225515443599184235140527708127148488034282436}{783359082020907319038132243156721764473305187274938982386562452696856040657866956471696348426576000844221} a^{18} - \frac{12170398255672404682790474200754525168311302551373898524480830025953731438382031004764976747566654168076302}{28984286034773570804410892996798705285512291929172742348302810749783673504341077389452764891783312031236177} a^{17} + \frac{5022475434010793797203735803929617897824618125920987765437177916070854794721758716441478455095662986361274}{28984286034773570804410892996798705285512291929172742348302810749783673504341077389452764891783312031236177} a^{16} - \frac{3672368268092147014319291605219298048888090049897239901492330220686402357720887466955556213606457825054691}{28984286034773570804410892996798705285512291929172742348302810749783673504341077389452764891783312031236177} a^{15} + \frac{10817593740583405537091630255439709052089297408600062642022502620866696742987679589234975949522043310000484}{28984286034773570804410892996798705285512291929172742348302810749783673504341077389452764891783312031236177} a^{14} + \frac{11055843183565935019109588470318134009528572633708613289033465344112171217539128272147702022073030626465915}{28984286034773570804410892996798705285512291929172742348302810749783673504341077389452764891783312031236177} a^{13} - \frac{8460507470719566348498133242964357767056076177672466991842134273313892920512258751470843292221280366746073}{28984286034773570804410892996798705285512291929172742348302810749783673504341077389452764891783312031236177} a^{12} + \frac{12649204757851423849625734019474816257146638663473379520712939906727915788746882023912723872280485072304657}{28984286034773570804410892996798705285512291929172742348302810749783673504341077389452764891783312031236177} a^{11} - \frac{13343195476544006165984763469257219804068129033752423858341101619374059878536564072097944926171904621318100}{28984286034773570804410892996798705285512291929172742348302810749783673504341077389452764891783312031236177} a^{10} - \frac{1323856633383299035622738088976120483271914951963588432532266154400164830112171151686875483883262066943742}{28984286034773570804410892996798705285512291929172742348302810749783673504341077389452764891783312031236177} a^{9} - \frac{11320156729506552407702374654488619026095973865187742922910490710422914944139449262290185620733201922444905}{28984286034773570804410892996798705285512291929172742348302810749783673504341077389452764891783312031236177} a^{8} + \frac{11102544271362149869830465658688421683915963878751201206195236686381311207935071008822251078385142262944289}{28984286034773570804410892996798705285512291929172742348302810749783673504341077389452764891783312031236177} a^{7} - \frac{1150373971207650769535250536353258807848321985960090333435877455677574685321821859078002185800404689352242}{28984286034773570804410892996798705285512291929172742348302810749783673504341077389452764891783312031236177} a^{6} - \frac{7143515613402065188942341295596952391599499293887917113151060987636883318622970114523625355314943167910388}{28984286034773570804410892996798705285512291929172742348302810749783673504341077389452764891783312031236177} a^{5} - \frac{14356389999376855750480205574846739814468063853910157127746075443256106720352891701971975032065285905273903}{28984286034773570804410892996798705285512291929172742348302810749783673504341077389452764891783312031236177} a^{4} - \frac{127229638529111004196115806337140800391142171735837138420946731656368529753423855264831761285799499341681}{28984286034773570804410892996798705285512291929172742348302810749783673504341077389452764891783312031236177} a^{3} + \frac{8616969019987116534210633556087332210966417396181541389995180725458103859243673339817393445954009454885436}{28984286034773570804410892996798705285512291929172742348302810749783673504341077389452764891783312031236177} a^{2} - \frac{5673341627110617956982965554731498046471426970138688066227882195260259669596793014215826236603070349379707}{28984286034773570804410892996798705285512291929172742348302810749783673504341077389452764891783312031236177} a - \frac{95864333232608466759430671343806422561999822478933225998898284841040607844801352018909793862028138651642}{298807072523438874272277247389677374077446308548172601528894956183336840250938942159306854554467134342641}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $32$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 503657750536712100000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 33 |
| The 33 conjugacy class representatives for $C_{33}$ |
| Character table for $C_{33}$ is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 11.11.1822837804551761449.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $33$ | $33$ | $33$ | R | $33$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{3}$ | $33$ | $33$ | $33$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{33}$ | $33$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{11}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{3}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{3}$ | $33$ | $33$ | $33$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 67 | Data not computed | ||||||