# SageMath code for working with number field 33.33.228343593450302703244344174036290254973199912242460469577320120681.1 # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: x = polygen(QQ); K. = NumberField(x^33 - 8*x^32 - 48*x^31 + 488*x^30 + 889*x^29 - 13082*x^28 - 6681*x^27 + 203003*x^26 - 17780*x^25 - 2022483*x^24 + 832653*x^23 + 13572345*x^22 - 8326527*x^21 - 62657637*x^20 + 47704277*x^19 + 199663335*x^18 - 178099102*x^17 - 433344046*x^16 + 447058648*x^15 + 617907878*x^14 - 750473359*x^13 - 533823452*x^12 + 817138243*x^11 + 221279551*x^10 - 544192951*x^9 + 11597098*x^8 + 199867737*x^7 - 43176794*x^6 - 33036600*x^5 + 11713378*x^4 + 1505253*x^3 - 925381*x^2 + 72350*x + 1013) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Autmorphisms: K.automorphisms() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Analytic class number formula: # self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K. = NumberField(x^33 - 8*x^32 - 48*x^31 + 488*x^30 + 889*x^29 - 13082*x^28 - 6681*x^27 + 203003*x^26 - 17780*x^25 - 2022483*x^24 + 832653*x^23 + 13572345*x^22 - 8326527*x^21 - 62657637*x^20 + 47704277*x^19 + 199663335*x^18 - 178099102*x^17 - 433344046*x^16 + 447058648*x^15 + 617907878*x^14 - 750473359*x^13 - 533823452*x^12 + 817138243*x^11 + 221279551*x^10 - 544192951*x^9 + 11597098*x^8 + 199867737*x^7 - 43176794*x^6 - 33036600*x^5 + 11713378*x^4 + 1505253*x^3 - 925381*x^2 + 72350*x + 1013) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK)))) # Intermediate fields: K.subfields()[1:-1] # Galois group: K.galois_group(type='pari') # Frobenius cycle types: # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]