# SageMath code for working with number field 33.33.19453503693937104587930129781385805482525288081047228454446873116938739522375281.1. # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: x = polygen(QQ); K. = NumberField(x^33 - 8*x^32 - 108*x^31 + 826*x^30 + 5517*x^29 - 37410*x^28 - 174850*x^27 + 974941*x^26 + 3753002*x^25 - 16170687*x^24 - 56209081*x^23 + 178946863*x^22 + 592568182*x^21 - 1351731560*x^20 - 4397140947*x^19 + 7038388451*x^18 + 22835380012*x^17 - 25350973354*x^16 - 82027847149*x^15 + 63440275941*x^14 + 199922687695*x^13 - 111827183164*x^12 - 320812557227*x^11 + 142179324189*x^10 + 323210228406*x^9 - 130110920902*x^8 - 188148415319*x^7 + 77322457297*x^6 + 52579210647*x^5 - 22741173483*x^4 - 3948105037*x^3 + 1212304894*x^2 + 227068790*x + 8672509) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Autmorphisms: K.automorphisms() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Analytic class number formula: # self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K. = NumberField(x^33 - 8*x^32 - 108*x^31 + 826*x^30 + 5517*x^29 - 37410*x^28 - 174850*x^27 + 974941*x^26 + 3753002*x^25 - 16170687*x^24 - 56209081*x^23 + 178946863*x^22 + 592568182*x^21 - 1351731560*x^20 - 4397140947*x^19 + 7038388451*x^18 + 22835380012*x^17 - 25350973354*x^16 - 82027847149*x^15 + 63440275941*x^14 + 199922687695*x^13 - 111827183164*x^12 - 320812557227*x^11 + 142179324189*x^10 + 323210228406*x^9 - 130110920902*x^8 - 188148415319*x^7 + 77322457297*x^6 + 52579210647*x^5 - 22741173483*x^4 - 3948105037*x^3 + 1212304894*x^2 + 227068790*x + 8672509) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK)))) # Intermediate fields: K.subfields()[1:-1] # Galois group: K.galois_group(type='pari') # Frobenius cycle types: # to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]