Properties

Label 33.33.194...281.1
Degree $33$
Signature $[33, 0]$
Discriminant $1.945\times 10^{79}$
Root discriminant \(252.75\)
Ramified primes $13,67$
Class number not computed
Class group not computed
Galois group $C_{33}$ (as 33T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^33 - 8*x^32 - 108*x^31 + 826*x^30 + 5517*x^29 - 37410*x^28 - 174850*x^27 + 974941*x^26 + 3753002*x^25 - 16170687*x^24 - 56209081*x^23 + 178946863*x^22 + 592568182*x^21 - 1351731560*x^20 - 4397140947*x^19 + 7038388451*x^18 + 22835380012*x^17 - 25350973354*x^16 - 82027847149*x^15 + 63440275941*x^14 + 199922687695*x^13 - 111827183164*x^12 - 320812557227*x^11 + 142179324189*x^10 + 323210228406*x^9 - 130110920902*x^8 - 188148415319*x^7 + 77322457297*x^6 + 52579210647*x^5 - 22741173483*x^4 - 3948105037*x^3 + 1212304894*x^2 + 227068790*x + 8672509)
 
Copy content gp:K = bnfinit(y^33 - 8*y^32 - 108*y^31 + 826*y^30 + 5517*y^29 - 37410*y^28 - 174850*y^27 + 974941*y^26 + 3753002*y^25 - 16170687*y^24 - 56209081*y^23 + 178946863*y^22 + 592568182*y^21 - 1351731560*y^20 - 4397140947*y^19 + 7038388451*y^18 + 22835380012*y^17 - 25350973354*y^16 - 82027847149*y^15 + 63440275941*y^14 + 199922687695*y^13 - 111827183164*y^12 - 320812557227*y^11 + 142179324189*y^10 + 323210228406*y^9 - 130110920902*y^8 - 188148415319*y^7 + 77322457297*y^6 + 52579210647*y^5 - 22741173483*y^4 - 3948105037*y^3 + 1212304894*y^2 + 227068790*y + 8672509, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^33 - 8*x^32 - 108*x^31 + 826*x^30 + 5517*x^29 - 37410*x^28 - 174850*x^27 + 974941*x^26 + 3753002*x^25 - 16170687*x^24 - 56209081*x^23 + 178946863*x^22 + 592568182*x^21 - 1351731560*x^20 - 4397140947*x^19 + 7038388451*x^18 + 22835380012*x^17 - 25350973354*x^16 - 82027847149*x^15 + 63440275941*x^14 + 199922687695*x^13 - 111827183164*x^12 - 320812557227*x^11 + 142179324189*x^10 + 323210228406*x^9 - 130110920902*x^8 - 188148415319*x^7 + 77322457297*x^6 + 52579210647*x^5 - 22741173483*x^4 - 3948105037*x^3 + 1212304894*x^2 + 227068790*x + 8672509);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^33 - 8*x^32 - 108*x^31 + 826*x^30 + 5517*x^29 - 37410*x^28 - 174850*x^27 + 974941*x^26 + 3753002*x^25 - 16170687*x^24 - 56209081*x^23 + 178946863*x^22 + 592568182*x^21 - 1351731560*x^20 - 4397140947*x^19 + 7038388451*x^18 + 22835380012*x^17 - 25350973354*x^16 - 82027847149*x^15 + 63440275941*x^14 + 199922687695*x^13 - 111827183164*x^12 - 320812557227*x^11 + 142179324189*x^10 + 323210228406*x^9 - 130110920902*x^8 - 188148415319*x^7 + 77322457297*x^6 + 52579210647*x^5 - 22741173483*x^4 - 3948105037*x^3 + 1212304894*x^2 + 227068790*x + 8672509)
 

\( x^{33} - 8 x^{32} - 108 x^{31} + 826 x^{30} + 5517 x^{29} - 37410 x^{28} - 174850 x^{27} + \cdots + 8672509 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $33$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[33, 0]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(19453503693937104587930129781385805482525288081047228454446873116938739522375281\) \(\medspace = 13^{22}\cdot 67^{30}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(252.75\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $13^{2/3}67^{10/11}\approx 252.75334042094067$
Ramified primes:   \(13\), \(67\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$:   $C_{33}$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(871=13\cdot 67\)
Dirichlet character group:    $\lbrace$$\chi_{871}(1,·)$, $\chi_{871}(131,·)$, $\chi_{871}(263,·)$, $\chi_{871}(9,·)$, $\chi_{871}(269,·)$, $\chi_{871}(14,·)$, $\chi_{871}(399,·)$, $\chi_{871}(22,·)$, $\chi_{871}(68,·)$, $\chi_{871}(282,·)$, $\chi_{871}(796,·)$, $\chi_{871}(159,·)$, $\chi_{871}(417,·)$, $\chi_{871}(679,·)$, $\chi_{871}(40,·)$, $\chi_{871}(685,·)$, $\chi_{871}(560,·)$, $\chi_{871}(308,·)$, $\chi_{871}(692,·)$, $\chi_{871}(828,·)$, $\chi_{871}(196,·)$, $\chi_{871}(198,·)$, $\chi_{871}(484,·)$, $\chi_{871}(464,·)$, $\chi_{871}(81,·)$, $\chi_{871}(729,·)$, $\chi_{871}(92,·)$, $\chi_{871}(612,·)$, $\chi_{871}(360,·)$, $\chi_{871}(107,·)$, $\chi_{871}(625,·)$, $\chi_{871}(627,·)$, $\chi_{871}(126,·)$$\rbrace$
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $\frac{1}{239}a^{28}+\frac{52}{239}a^{27}-\frac{3}{239}a^{26}-\frac{75}{239}a^{25}-\frac{89}{239}a^{24}-\frac{19}{239}a^{23}+\frac{38}{239}a^{22}+\frac{111}{239}a^{21}-\frac{111}{239}a^{20}+\frac{29}{239}a^{19}+\frac{117}{239}a^{18}-\frac{51}{239}a^{17}-\frac{21}{239}a^{16}-\frac{56}{239}a^{15}+\frac{15}{239}a^{14}-\frac{65}{239}a^{13}+\frac{80}{239}a^{12}-\frac{2}{239}a^{11}+\frac{70}{239}a^{10}+\frac{88}{239}a^{9}+\frac{101}{239}a^{8}+\frac{87}{239}a^{7}+\frac{77}{239}a^{6}+\frac{84}{239}a^{5}-\frac{63}{239}a^{4}-\frac{27}{239}a^{3}-\frac{36}{239}a^{2}+\frac{17}{239}a+\frac{32}{239}$, $\frac{1}{239}a^{29}-\frac{78}{239}a^{27}+\frac{81}{239}a^{26}-\frac{13}{239}a^{25}+\frac{68}{239}a^{24}+\frac{70}{239}a^{23}+\frac{47}{239}a^{22}+\frac{92}{239}a^{21}+\frac{65}{239}a^{20}+\frac{43}{239}a^{19}+\frac{79}{239}a^{18}+\frac{2}{239}a^{17}+\frac{80}{239}a^{16}+\frac{59}{239}a^{15}+\frac{111}{239}a^{14}+\frac{114}{239}a^{13}-\frac{99}{239}a^{12}-\frac{65}{239}a^{11}+\frac{33}{239}a^{10}+\frac{66}{239}a^{9}+\frac{93}{239}a^{8}+\frac{94}{239}a^{7}-\frac{96}{239}a^{6}+\frac{110}{239}a^{5}-\frac{97}{239}a^{4}-\frac{66}{239}a^{3}-\frac{23}{239}a^{2}+\frac{104}{239}a+\frac{9}{239}$, $\frac{1}{256447}a^{30}+\frac{423}{256447}a^{29}+\frac{113}{256447}a^{28}+\frac{58757}{256447}a^{27}-\frac{4802}{256447}a^{26}+\frac{18962}{256447}a^{25}+\frac{36691}{256447}a^{24}-\frac{125498}{256447}a^{23}-\frac{92030}{256447}a^{22}+\frac{41301}{256447}a^{21}+\frac{91660}{256447}a^{20}-\frac{102624}{256447}a^{19}+\frac{16092}{256447}a^{18}+\frac{111880}{256447}a^{17}+\frac{94657}{256447}a^{16}-\frac{110386}{256447}a^{15}+\frac{2958}{8843}a^{14}-\frac{101000}{256447}a^{13}-\frac{102425}{256447}a^{12}-\frac{9441}{256447}a^{11}-\frac{113615}{256447}a^{10}-\frac{85675}{256447}a^{9}-\frac{114551}{256447}a^{8}-\frac{2277}{6931}a^{7}+\frac{4562}{256447}a^{6}-\frac{30255}{256447}a^{5}-\frac{1267}{256447}a^{4}+\frac{3947}{256447}a^{3}+\frac{69778}{256447}a^{2}+\frac{74255}{256447}a-\frac{35491}{256447}$, $\frac{1}{256447}a^{31}+\frac{375}{256447}a^{29}+\frac{228}{256447}a^{28}+\frac{98967}{256447}a^{27}-\frac{72186}{256447}a^{26}-\frac{20429}{256447}a^{25}+\frac{58637}{256447}a^{24}+\frac{90432}{256447}a^{23}+\frac{1471}{6931}a^{22}-\frac{32545}{256447}a^{21}+\frac{121235}{256447}a^{20}+\frac{43581}{256447}a^{19}+\frac{50915}{256447}a^{18}+\frac{91936}{256447}a^{17}+\frac{1897}{8843}a^{16}-\frac{4813}{256447}a^{15}+\frac{11520}{256447}a^{14}-\frac{3776}{8843}a^{13}+\frac{99113}{256447}a^{12}-\frac{52617}{256447}a^{11}+\frac{51144}{256447}a^{10}+\frac{78539}{256447}a^{9}+\frac{96554}{256447}a^{8}+\frac{6486}{256447}a^{7}+\frac{14339}{256447}a^{6}+\frac{59}{239}a^{5}-\frac{9488}{256447}a^{4}-\frac{57902}{256447}a^{3}-\frac{95289}{256447}a^{2}+\frac{86895}{256447}a+\frac{125891}{256447}$, $\frac{1}{16\cdots 59}a^{32}-\frac{11\cdots 59}{16\cdots 59}a^{31}-\frac{64\cdots 62}{16\cdots 59}a^{30}-\frac{30\cdots 41}{16\cdots 59}a^{29}+\frac{16\cdots 17}{16\cdots 59}a^{28}+\frac{35\cdots 80}{16\cdots 59}a^{27}-\frac{70\cdots 92}{16\cdots 59}a^{26}+\frac{41\cdots 67}{16\cdots 59}a^{25}+\frac{74\cdots 87}{16\cdots 59}a^{24}+\frac{60\cdots 69}{45\cdots 07}a^{23}+\frac{54\cdots 57}{16\cdots 59}a^{22}+\frac{12\cdots 16}{16\cdots 59}a^{21}-\frac{32\cdots 31}{16\cdots 59}a^{20}-\frac{22\cdots 35}{58\cdots 71}a^{19}-\frac{50\cdots 00}{16\cdots 59}a^{18}-\frac{18\cdots 72}{16\cdots 59}a^{17}-\frac{72\cdots 46}{16\cdots 59}a^{16}-\frac{39\cdots 91}{16\cdots 59}a^{15}-\frac{79\cdots 80}{16\cdots 59}a^{14}+\frac{78\cdots 61}{16\cdots 59}a^{13}-\frac{49\cdots 31}{16\cdots 59}a^{12}-\frac{82\cdots 47}{16\cdots 59}a^{11}-\frac{23\cdots 85}{16\cdots 59}a^{10}-\frac{15\cdots 62}{16\cdots 59}a^{9}-\frac{47\cdots 53}{16\cdots 59}a^{8}+\frac{14\cdots 33}{16\cdots 59}a^{7}-\frac{75\cdots 52}{16\cdots 59}a^{6}+\frac{74\cdots 69}{16\cdots 59}a^{5}+\frac{54\cdots 33}{16\cdots 59}a^{4}+\frac{15\cdots 10}{16\cdots 59}a^{3}-\frac{59\cdots 34}{16\cdots 59}a^{2}+\frac{14\cdots 50}{16\cdots 59}a+\frac{13\cdots 12}{16\cdots 59}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  not computed
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  not computed
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $32$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:  not computed
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{33}\cdot(2\pi)^{0}\cdot R \cdot h}{2\cdot\sqrt{19453503693937104587930129781385805482525288081047228454446873116938739522375281}}\cr\mathstrut & \text{ some values not computed } \end{aligned}\]

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^33 - 8*x^32 - 108*x^31 + 826*x^30 + 5517*x^29 - 37410*x^28 - 174850*x^27 + 974941*x^26 + 3753002*x^25 - 16170687*x^24 - 56209081*x^23 + 178946863*x^22 + 592568182*x^21 - 1351731560*x^20 - 4397140947*x^19 + 7038388451*x^18 + 22835380012*x^17 - 25350973354*x^16 - 82027847149*x^15 + 63440275941*x^14 + 199922687695*x^13 - 111827183164*x^12 - 320812557227*x^11 + 142179324189*x^10 + 323210228406*x^9 - 130110920902*x^8 - 188148415319*x^7 + 77322457297*x^6 + 52579210647*x^5 - 22741173483*x^4 - 3948105037*x^3 + 1212304894*x^2 + 227068790*x + 8672509) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^33 - 8*x^32 - 108*x^31 + 826*x^30 + 5517*x^29 - 37410*x^28 - 174850*x^27 + 974941*x^26 + 3753002*x^25 - 16170687*x^24 - 56209081*x^23 + 178946863*x^22 + 592568182*x^21 - 1351731560*x^20 - 4397140947*x^19 + 7038388451*x^18 + 22835380012*x^17 - 25350973354*x^16 - 82027847149*x^15 + 63440275941*x^14 + 199922687695*x^13 - 111827183164*x^12 - 320812557227*x^11 + 142179324189*x^10 + 323210228406*x^9 - 130110920902*x^8 - 188148415319*x^7 + 77322457297*x^6 + 52579210647*x^5 - 22741173483*x^4 - 3948105037*x^3 + 1212304894*x^2 + 227068790*x + 8672509, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^33 - 8*x^32 - 108*x^31 + 826*x^30 + 5517*x^29 - 37410*x^28 - 174850*x^27 + 974941*x^26 + 3753002*x^25 - 16170687*x^24 - 56209081*x^23 + 178946863*x^22 + 592568182*x^21 - 1351731560*x^20 - 4397140947*x^19 + 7038388451*x^18 + 22835380012*x^17 - 25350973354*x^16 - 82027847149*x^15 + 63440275941*x^14 + 199922687695*x^13 - 111827183164*x^12 - 320812557227*x^11 + 142179324189*x^10 + 323210228406*x^9 - 130110920902*x^8 - 188148415319*x^7 + 77322457297*x^6 + 52579210647*x^5 - 22741173483*x^4 - 3948105037*x^3 + 1212304894*x^2 + 227068790*x + 8672509); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^33 - 8*x^32 - 108*x^31 + 826*x^30 + 5517*x^29 - 37410*x^28 - 174850*x^27 + 974941*x^26 + 3753002*x^25 - 16170687*x^24 - 56209081*x^23 + 178946863*x^22 + 592568182*x^21 - 1351731560*x^20 - 4397140947*x^19 + 7038388451*x^18 + 22835380012*x^17 - 25350973354*x^16 - 82027847149*x^15 + 63440275941*x^14 + 199922687695*x^13 - 111827183164*x^12 - 320812557227*x^11 + 142179324189*x^10 + 323210228406*x^9 - 130110920902*x^8 - 188148415319*x^7 + 77322457297*x^6 + 52579210647*x^5 - 22741173483*x^4 - 3948105037*x^3 + 1212304894*x^2 + 227068790*x + 8672509); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{33}$ (as 33T1):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A cyclic group of order 33
The 33 conjugacy class representatives for $C_{33}$
Character table for $C_{33}$

Intermediate fields

3.3.169.1, 11.11.1822837804551761449.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $33$ $33$ ${\href{/padicField/5.11.0.1}{11} }^{3}$ $33$ $33$ R $33$ $33$ $33$ ${\href{/padicField/29.3.0.1}{3} }^{11}$ ${\href{/padicField/31.11.0.1}{11} }^{3}$ ${\href{/padicField/37.3.0.1}{3} }^{11}$ $33$ $33$ ${\href{/padicField/47.11.0.1}{11} }^{3}$ ${\href{/padicField/53.11.0.1}{11} }^{3}$ $33$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(13\) Copy content Toggle raw display Deg $33$$3$$11$$22$
\(67\) Copy content Toggle raw display Deg $33$$11$$3$$30$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)