Normalized defining polynomial
\( x^{33} - 8 x^{32} - 108 x^{31} + 826 x^{30} + 5517 x^{29} - 37410 x^{28} - 174850 x^{27} + 974941 x^{26} + 3753002 x^{25} - 16170687 x^{24} - 56209081 x^{23} + 178946863 x^{22} + 592568182 x^{21} - 1351731560 x^{20} - 4397140947 x^{19} + 7038388451 x^{18} + 22835380012 x^{17} - 25350973354 x^{16} - 82027847149 x^{15} + 63440275941 x^{14} + 199922687695 x^{13} - 111827183164 x^{12} - 320812557227 x^{11} + 142179324189 x^{10} + 323210228406 x^{9} - 130110920902 x^{8} - 188148415319 x^{7} + 77322457297 x^{6} + 52579210647 x^{5} - 22741173483 x^{4} - 3948105037 x^{3} + 1212304894 x^{2} + 227068790 x + 8672509 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $\frac{1}{239} a^{28} + \frac{52}{239} a^{27} - \frac{3}{239} a^{26} - \frac{75}{239} a^{25} - \frac{89}{239} a^{24} - \frac{19}{239} a^{23} + \frac{38}{239} a^{22} + \frac{111}{239} a^{21} - \frac{111}{239} a^{20} + \frac{29}{239} a^{19} + \frac{117}{239} a^{18} - \frac{51}{239} a^{17} - \frac{21}{239} a^{16} - \frac{56}{239} a^{15} + \frac{15}{239} a^{14} - \frac{65}{239} a^{13} + \frac{80}{239} a^{12} - \frac{2}{239} a^{11} + \frac{70}{239} a^{10} + \frac{88}{239} a^{9} + \frac{101}{239} a^{8} + \frac{87}{239} a^{7} + \frac{77}{239} a^{6} + \frac{84}{239} a^{5} - \frac{63}{239} a^{4} - \frac{27}{239} a^{3} - \frac{36}{239} a^{2} + \frac{17}{239} a + \frac{32}{239}$, $\frac{1}{239} a^{29} - \frac{78}{239} a^{27} + \frac{81}{239} a^{26} - \frac{13}{239} a^{25} + \frac{68}{239} a^{24} + \frac{70}{239} a^{23} + \frac{47}{239} a^{22} + \frac{92}{239} a^{21} + \frac{65}{239} a^{20} + \frac{43}{239} a^{19} + \frac{79}{239} a^{18} + \frac{2}{239} a^{17} + \frac{80}{239} a^{16} + \frac{59}{239} a^{15} + \frac{111}{239} a^{14} + \frac{114}{239} a^{13} - \frac{99}{239} a^{12} - \frac{65}{239} a^{11} + \frac{33}{239} a^{10} + \frac{66}{239} a^{9} + \frac{93}{239} a^{8} + \frac{94}{239} a^{7} - \frac{96}{239} a^{6} + \frac{110}{239} a^{5} - \frac{97}{239} a^{4} - \frac{66}{239} a^{3} - \frac{23}{239} a^{2} + \frac{104}{239} a + \frac{9}{239}$, $\frac{1}{256447} a^{30} + \frac{423}{256447} a^{29} + \frac{113}{256447} a^{28} + \frac{58757}{256447} a^{27} - \frac{4802}{256447} a^{26} + \frac{18962}{256447} a^{25} + \frac{36691}{256447} a^{24} - \frac{125498}{256447} a^{23} - \frac{92030}{256447} a^{22} + \frac{41301}{256447} a^{21} + \frac{91660}{256447} a^{20} - \frac{102624}{256447} a^{19} + \frac{16092}{256447} a^{18} + \frac{111880}{256447} a^{17} + \frac{94657}{256447} a^{16} - \frac{110386}{256447} a^{15} + \frac{2958}{8843} a^{14} - \frac{101000}{256447} a^{13} - \frac{102425}{256447} a^{12} - \frac{9441}{256447} a^{11} - \frac{113615}{256447} a^{10} - \frac{85675}{256447} a^{9} - \frac{114551}{256447} a^{8} - \frac{2277}{6931} a^{7} + \frac{4562}{256447} a^{6} - \frac{30255}{256447} a^{5} - \frac{1267}{256447} a^{4} + \frac{3947}{256447} a^{3} + \frac{69778}{256447} a^{2} + \frac{74255}{256447} a - \frac{35491}{256447}$, $\frac{1}{256447} a^{31} + \frac{375}{256447} a^{29} + \frac{228}{256447} a^{28} + \frac{98967}{256447} a^{27} - \frac{72186}{256447} a^{26} - \frac{20429}{256447} a^{25} + \frac{58637}{256447} a^{24} + \frac{90432}{256447} a^{23} + \frac{1471}{6931} a^{22} - \frac{32545}{256447} a^{21} + \frac{121235}{256447} a^{20} + \frac{43581}{256447} a^{19} + \frac{50915}{256447} a^{18} + \frac{91936}{256447} a^{17} + \frac{1897}{8843} a^{16} - \frac{4813}{256447} a^{15} + \frac{11520}{256447} a^{14} - \frac{3776}{8843} a^{13} + \frac{99113}{256447} a^{12} - \frac{52617}{256447} a^{11} + \frac{51144}{256447} a^{10} + \frac{78539}{256447} a^{9} + \frac{96554}{256447} a^{8} + \frac{6486}{256447} a^{7} + \frac{14339}{256447} a^{6} + \frac{59}{239} a^{5} - \frac{9488}{256447} a^{4} - \frac{57902}{256447} a^{3} - \frac{95289}{256447} a^{2} + \frac{86895}{256447} a + \frac{125891}{256447}$, $\frac{1}{16953202292811457834251888500515468931736226817896002070603421711217649446750205546884407746988417436261180724022404750331208029204759} a^{32} - \frac{11231026513664647198361789549981398379104240065194468545477253153576315860787967883221825922804179208288682234841651444110713359}{16953202292811457834251888500515468931736226817896002070603421711217649446750205546884407746988417436261180724022404750331208029204759} a^{31} - \frac{6462564463596229866619247050445673668741302787825997394954675712585226903435587162507639530854683157533253159258474856970855462}{16953202292811457834251888500515468931736226817896002070603421711217649446750205546884407746988417436261180724022404750331208029204759} a^{30} - \frac{30536329803869690787295491934063078937156967453770638143123500997348036140931919971701069483662757064951232749976936083958320766341}{16953202292811457834251888500515468931736226817896002070603421711217649446750205546884407746988417436261180724022404750331208029204759} a^{29} + \frac{16994991318575602820167719603635251874184080375688212193604206352341524132581162326415326828621170935647792844897907087346378268317}{16953202292811457834251888500515468931736226817896002070603421711217649446750205546884407746988417436261180724022404750331208029204759} a^{28} + \frac{3500621592143191011296359500946980685930581900366517672922122728487190046551904928572194314583520191862531665831007711706260704676780}{16953202292811457834251888500515468931736226817896002070603421711217649446750205546884407746988417436261180724022404750331208029204759} a^{27} - \frac{701614832589626272909029982508384200202104760813839309558890638140985699102932192916073449201467246599749347245630846590898098475092}{16953202292811457834251888500515468931736226817896002070603421711217649446750205546884407746988417436261180724022404750331208029204759} a^{26} + \frac{4170622582271597265678753114878393924609140903047951304757391957816708974808973134140291188341985434438391073702778031944928473586967}{16953202292811457834251888500515468931736226817896002070603421711217649446750205546884407746988417436261180724022404750331208029204759} a^{25} + \frac{7494202875153019285823327080916404881966421712086302704915811183146322323813813418834342582692222088819728598341196684984194827857687}{16953202292811457834251888500515468931736226817896002070603421711217649446750205546884407746988417436261180724022404750331208029204759} a^{24} + \frac{60921994824386858371279977372619351973598762886033908554475484107261896068960846572494475616225675675459835112734918812159369901269}{458194656562471833358159148662580241398276400483675731637930316519395930993248798564443452621308579358410289838443371630573189978507} a^{23} + \frac{5414461205017763844712375694211458645540491634415528462003810723243695551876457795037712637853533921444103258367925736734749303645757}{16953202292811457834251888500515468931736226817896002070603421711217649446750205546884407746988417436261180724022404750331208029204759} a^{22} + \frac{1202128915249481752352932617788214136291537117661770168443746623320910168451927343253265356857928707960533705210554982906536055811516}{16953202292811457834251888500515468931736226817896002070603421711217649446750205546884407746988417436261180724022404750331208029204759} a^{21} - \frac{3227033169801970497430038372853200015155284117257582848379441226319191111984167254229067056511062247843528260502102013789909293537531}{16953202292811457834251888500515468931736226817896002070603421711217649446750205546884407746988417436261180724022404750331208029204759} a^{20} - \frac{228345371782733274320925625942873780617075009187919403589813598253800266367484682200831400969404917104152011890205647782481666031335}{584593182510739925319030637948809273508145752341241450710462817628194808508627777478772680930635084009006231862841543114869242386371} a^{19} - \frac{5040600141446754374609120913336970698713947581211195489139293315993594171311717626126793303448171795864046270266731264059607068763900}{16953202292811457834251888500515468931736226817896002070603421711217649446750205546884407746988417436261180724022404750331208029204759} a^{18} - \frac{1826568398877270213062519613876177287101726424689241492381018843427280486638479694021920788681170015883527972292924447659233110547472}{16953202292811457834251888500515468931736226817896002070603421711217649446750205546884407746988417436261180724022404750331208029204759} a^{17} - \frac{7261610472112294884086383617916963385264986027442487309349406451585698313594842051046977808563109606820257769354923977922095971545346}{16953202292811457834251888500515468931736226817896002070603421711217649446750205546884407746988417436261180724022404750331208029204759} a^{16} - \frac{3937717945889909104362368672339991703874229739887103657880292065611379649966559507840115455336639285681575790370949844014206351335491}{16953202292811457834251888500515468931736226817896002070603421711217649446750205546884407746988417436261180724022404750331208029204759} a^{15} - \frac{7956424053162553549851355542923655779599125843027066088178496003350617246548841193475983483085117782432570555227225591864681688134580}{16953202292811457834251888500515468931736226817896002070603421711217649446750205546884407746988417436261180724022404750331208029204759} a^{14} + \frac{7802193788212798889877418242804144360248218400858566449374879891709973141241259470244841432911853996680812275474095781285622357776061}{16953202292811457834251888500515468931736226817896002070603421711217649446750205546884407746988417436261180724022404750331208029204759} a^{13} - \frac{4905409124832309462840207088431539121200029876377085447420520825864141993797795103351619747025010427472867904802398158890661409146331}{16953202292811457834251888500515468931736226817896002070603421711217649446750205546884407746988417436261180724022404750331208029204759} a^{12} - \frac{8224859590084627773449614738629996452509802471451719518292925231792209319843729863728789296404388174421251952446044602805378409266847}{16953202292811457834251888500515468931736226817896002070603421711217649446750205546884407746988417436261180724022404750331208029204759} a^{11} - \frac{2326988668181593367740545200360261454269686835741937992892627853041463663973727239336034356730137276709005517090038889612704825245985}{16953202292811457834251888500515468931736226817896002070603421711217649446750205546884407746988417436261180724022404750331208029204759} a^{10} - \frac{1574206708522172829129714811600099055025754953149526484893766359253014031906765171935305114657426330069838559862439719654759760366062}{16953202292811457834251888500515468931736226817896002070603421711217649446750205546884407746988417436261180724022404750331208029204759} a^{9} - \frac{4764181889846411535210112237657379813081776774262660956995669821212030756767915300476943157433753203313904457044910831503891032043253}{16953202292811457834251888500515468931736226817896002070603421711217649446750205546884407746988417436261180724022404750331208029204759} a^{8} + \frac{1497878211843615413111707598097281972901480569764942032313867195467037460644289201680463491673752902377072559323623105496344790292333}{16953202292811457834251888500515468931736226817896002070603421711217649446750205546884407746988417436261180724022404750331208029204759} a^{7} - \frac{7577678847390928040880853833699681886165664225823788697575858911172627132345043398792510310417690987236291091482648483613816653956952}{16953202292811457834251888500515468931736226817896002070603421711217649446750205546884407746988417436261180724022404750331208029204759} a^{6} + \frac{742670475845867471941477691567946887476527112028442472258561299315557384127103620499219669312285266632828390290915663118859946758369}{16953202292811457834251888500515468931736226817896002070603421711217649446750205546884407746988417436261180724022404750331208029204759} a^{5} + \frac{5498836782608169469468301852072516288345980179908980305651625636220382677332946484183907418413814408516549931274315918367969367283333}{16953202292811457834251888500515468931736226817896002070603421711217649446750205546884407746988417436261180724022404750331208029204759} a^{4} + \frac{1592986331884272260860212816112582736123861468973477046815034209590079365587277187074104964180106169281388668865258320021920033244410}{16953202292811457834251888500515468931736226817896002070603421711217649446750205546884407746988417436261180724022404750331208029204759} a^{3} - \frac{5967401801706030002598131616290339548709125708265737102736028161630108297154226562215717164289960118501899813390031572960697799714534}{16953202292811457834251888500515468931736226817896002070603421711217649446750205546884407746988417436261180724022404750331208029204759} a^{2} + \frac{1418875837138700959999979153267439484726215362400926444740958895232820780970547886003790056417727239902264180840082665664449008375550}{16953202292811457834251888500515468931736226817896002070603421711217649446750205546884407746988417436261180724022404750331208029204759} a + \frac{1311417060330778672815778772038676883806460802980258996348242104845966244658589763160213875528099292550341424409310958361983156514712}{16953202292811457834251888500515468931736226817896002070603421711217649446750205546884407746988417436261180724022404750331208029204759}$
Class group and class number
Not computed
Unit group
| Rank: | $32$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 33 |
| The 33 conjugacy class representatives for $C_{33}$ |
| Character table for $C_{33}$ is not computed |
Intermediate fields
| 3.3.169.1, 11.11.1822837804551761449.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $33$ | $33$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{3}$ | $33$ | $33$ | R | $33$ | $33$ | $33$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{11}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{11}$ | $33$ | $33$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{3}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{3}$ | $33$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| 67 | Data not computed | ||||||