Normalized defining polynomial
\( x^{33} - 3 x^{32} - 3 x^{31} + 28 x^{30} - 58 x^{29} + 22 x^{28} + 191 x^{27} - 526 x^{26} + 330 x^{25} + 728 x^{24} - 1012 x^{23} + 413 x^{22} - 2524 x^{21} + 3437 x^{20} + 6311 x^{19} - 13555 x^{18} - 573 x^{17} + 14501 x^{16} - 6805 x^{15} - 2479 x^{14} + 5007 x^{13} - 7594 x^{12} - 344 x^{11} + 8602 x^{10} - 626 x^{9} - 5041 x^{8} + 15 x^{7} + 1789 x^{6} + 121 x^{5} - 352 x^{4} - 33 x^{3} + 32 x^{2} + 2 x - 1 \)
Invariants
Degree: | $33$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[11, 11]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-1635170022196481349560959748587682926364327\)\(\medspace = -\,23^{31}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $19.02$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $23$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $11$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $\frac{1}{599} a^{31} - \frac{277}{599} a^{30} - \frac{244}{599} a^{29} + \frac{108}{599} a^{28} + \frac{231}{599} a^{27} + \frac{282}{599} a^{26} - \frac{77}{599} a^{25} + \frac{163}{599} a^{24} + \frac{284}{599} a^{23} + \frac{207}{599} a^{22} + \frac{198}{599} a^{21} + \frac{186}{599} a^{20} - \frac{67}{599} a^{19} - \frac{65}{599} a^{18} - \frac{209}{599} a^{17} + \frac{81}{599} a^{16} + \frac{12}{599} a^{15} - \frac{123}{599} a^{14} - \frac{251}{599} a^{13} + \frac{137}{599} a^{12} + \frac{208}{599} a^{11} + \frac{49}{599} a^{10} + \frac{56}{599} a^{9} + \frac{207}{599} a^{8} + \frac{58}{599} a^{7} + \frac{147}{599} a^{6} + \frac{235}{599} a^{5} + \frac{176}{599} a^{4} - \frac{119}{599} a^{3} + \frac{272}{599} a^{2} - \frac{218}{599} a - \frac{118}{599}$, $\frac{1}{66753596490060073962937664243030405529214290145422481} a^{32} - \frac{48162305301145250212509141197202925540031031071}{111441730367379088418927653160317872335917011928919} a^{31} + \frac{1863500054302098766710439816312490376831033690984440}{66753596490060073962937664243030405529214290145422481} a^{30} + \frac{5049309033324112788213980935494988438450471653047362}{66753596490060073962937664243030405529214290145422481} a^{29} + \frac{10190697857752620709364034742649562668085794412042791}{66753596490060073962937664243030405529214290145422481} a^{28} + \frac{15387826774467798785010946314253923128173323142759022}{66753596490060073962937664243030405529214290145422481} a^{27} + \frac{20408922851806149248023663031291959921583779388241160}{66753596490060073962937664243030405529214290145422481} a^{26} + \frac{7156445526904976778449372553661521690871380575585312}{66753596490060073962937664243030405529214290145422481} a^{25} + \frac{11026122334962817108149547153875169477697406505448223}{66753596490060073962937664243030405529214290145422481} a^{24} - \frac{31522221173769789299861908469692666274553566166354521}{66753596490060073962937664243030405529214290145422481} a^{23} + \frac{28718405049041936930791201880298662443682111872643973}{66753596490060073962937664243030405529214290145422481} a^{22} + \frac{19315034797179559549013887567098039029903883227263292}{66753596490060073962937664243030405529214290145422481} a^{21} + \frac{2829960811772751849881291285843519979538523295345354}{66753596490060073962937664243030405529214290145422481} a^{20} + \frac{5064717253054895820634907981323720899483393819654916}{66753596490060073962937664243030405529214290145422481} a^{19} + \frac{14613840097588283022372605589209227139637287065649137}{66753596490060073962937664243030405529214290145422481} a^{18} + \frac{30504101573497540941482521493244320271812216189366913}{66753596490060073962937664243030405529214290145422481} a^{17} - \frac{22696785016008744771517699558507517585459741848475781}{66753596490060073962937664243030405529214290145422481} a^{16} + \frac{13571743096902749391024199056937970452352031022017433}{66753596490060073962937664243030405529214290145422481} a^{15} - \frac{17874624152600882289018747075718513530327086696795137}{66753596490060073962937664243030405529214290145422481} a^{14} - \frac{7704098533015577358719911153568274250633374912531528}{66753596490060073962937664243030405529214290145422481} a^{13} + \frac{30014569192926784608483611859533614405463583087588937}{66753596490060073962937664243030405529214290145422481} a^{12} - \frac{744069963401288716275460854453608056905715788878916}{66753596490060073962937664243030405529214290145422481} a^{11} - \frac{6165393796370349997873121435207479129699020067436558}{66753596490060073962937664243030405529214290145422481} a^{10} + \frac{4108296104588939004268001178968999498981886372697303}{66753596490060073962937664243030405529214290145422481} a^{9} + \frac{13133976720828007926202414592470187538992165142513763}{66753596490060073962937664243030405529214290145422481} a^{8} - \frac{2899633340230204270793005839901596886565517853386723}{66753596490060073962937664243030405529214290145422481} a^{7} - \frac{17205451087316476276993560686427122188989401184512405}{66753596490060073962937664243030405529214290145422481} a^{6} + \frac{4076241814381575707746846644268022084133735080388198}{66753596490060073962937664243030405529214290145422481} a^{5} + \frac{19938112136932491763920971960727744701489860467241502}{66753596490060073962937664243030405529214290145422481} a^{4} - \frac{31069830033938897023709161542022768026041290033279643}{66753596490060073962937664243030405529214290145422481} a^{3} + \frac{27090212339070239228351817152764578311718290418923129}{66753596490060073962937664243030405529214290145422481} a^{2} - \frac{15103114135755689009556245898636359837516772106102841}{66753596490060073962937664243030405529214290145422481} a - \frac{9241615792537692556126926180262451411495908560629411}{66753596490060073962937664243030405529214290145422481}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $21$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 255776199.8931762 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_{11}\times S_3$ (as 33T2):
A solvable group of order 66 |
The 33 conjugacy class representatives for $C_{11}\times S_3$ |
Character table for $C_{11}\times S_3$ is not computed |
Intermediate fields
3.1.23.1, \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $33$ | $33$ | $22{,}\,{\href{/LocalNumberField/5.11.0.1}{11} }$ | $22{,}\,{\href{/LocalNumberField/7.11.0.1}{11} }$ | $22{,}\,{\href{/LocalNumberField/11.11.0.1}{11} }$ | $33$ | $22{,}\,{\href{/LocalNumberField/17.11.0.1}{11} }$ | $22{,}\,{\href{/LocalNumberField/19.11.0.1}{11} }$ | R | $33$ | $33$ | $22{,}\,{\href{/LocalNumberField/37.11.0.1}{11} }$ | $33$ | $22{,}\,{\href{/LocalNumberField/43.11.0.1}{11} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{11}$ | $22{,}\,{\href{/LocalNumberField/53.11.0.1}{11} }$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
23 | Data not computed |