Normalized defining polynomial
\( x^{33} - x - 4 \)
Invariants
Degree: | $33$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[1, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(554523399762182584434156099399820258409019549528626290491392\)\(\medspace = 2^{32}\cdot 1621\cdot 3527\cdot 195457\cdot 11716761181\cdot 14330054499223\cdot 688121128326241\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $64.63$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 1621, 3527, 195457, 11716761181, 14330054499223, 688121128326241$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2} a^{17} - \frac{1}{2} a$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{20} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{21} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{22} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{23} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{24} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{25} - \frac{1}{2} a^{9}$, $\frac{1}{2} a^{26} - \frac{1}{2} a^{10}$, $\frac{1}{2} a^{27} - \frac{1}{2} a^{11}$, $\frac{1}{2} a^{28} - \frac{1}{2} a^{12}$, $\frac{1}{2} a^{29} - \frac{1}{2} a^{13}$, $\frac{1}{2} a^{30} - \frac{1}{2} a^{14}$, $\frac{1}{2} a^{31} - \frac{1}{2} a^{15}$, $\frac{1}{2} a^{32} - \frac{1}{2} a^{16}$
Class group and class number
not computed
Unit group
Rank: | $16$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$S_{33}$ (as 33T162):
A non-solvable group of order 8683317618811886495518194401280000000 |
The 10143 conjugacy class representatives for $S_{33}$ are not computed |
Character table for $S_{33}$ is not computed |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | $26{,}\,{\href{/LocalNumberField/3.7.0.1}{7} }$ | $17{,}\,16$ | $32{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $27{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | $29{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | $20{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }$ | $18{,}\,{\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }$ | $30{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $21{,}\,{\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $27{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | $33$ | $20{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $20{,}\,{\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $17{,}\,{\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
1621 | Data not computed | ||||||
3527 | Data not computed | ||||||
195457 | Data not computed | ||||||
11716761181 | Data not computed | ||||||
14330054499223 | Data not computed | ||||||
688121128326241 | Data not computed |