Normalized defining polynomial
\(x^{33} - 5\)
Invariants
Degree: | $33$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[1, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(300\!\cdots\!625\)\(\medspace = 3^{33}\cdot 5^{32}\cdot 11^{33}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $157.15$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $3, 5, 11$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$
Class group and class number
not computed
Unit group
Rank: | $16$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | not computed ![]() | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 660 |
The 33 conjugacy class representatives for t33n11 |
Character table for t33n11 is not computed |
Intermediate fields
3.1.675.1, 11.1.2786246783310546875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{3}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | R | R | $30{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $30{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | $22{,}\,{\href{/LocalNumberField/23.11.0.1}{11} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $15^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | $15^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{5}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$3$ | 3.3.3.2 | $x^{3} + 3 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ |
3.15.15.49 | $x^{15} + 15 x^{14} + 24 x^{13} + 6 x^{12} + 21 x^{11} + 3 x^{10} + x^{9} + 3 x^{8} + 15 x^{7} + 9 x^{6} + 18 x^{5} + 25 x^{3} + 21 x^{2} + 9 x + 4$ | $3$ | $5$ | $15$ | $S_3 \times C_5$ | $[3/2]_{2}^{5}$ | |
3.15.15.49 | $x^{15} + 15 x^{14} + 24 x^{13} + 6 x^{12} + 21 x^{11} + 3 x^{10} + x^{9} + 3 x^{8} + 15 x^{7} + 9 x^{6} + 18 x^{5} + 25 x^{3} + 21 x^{2} + 9 x + 4$ | $3$ | $5$ | $15$ | $S_3 \times C_5$ | $[3/2]_{2}^{5}$ | |
5 | Data not computed | ||||||
11 | Data not computed |