Normalized defining polynomial
\( x^{33} - x - 3 \)
Invariants
| Degree: | $33$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(174757860384289043464817628942563291244649385569927086025238153=32159\cdot 1547725797949519945333\cdot 3511075445128887057511203662401094299\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $76.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $32159, 1547725797949519945333, 3511075445128887057511203662401094299$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $\frac{1}{37} a^{32} + \frac{5}{37} a^{31} - \frac{12}{37} a^{30} + \frac{14}{37} a^{29} - \frac{4}{37} a^{28} + \frac{17}{37} a^{27} + \frac{11}{37} a^{26} + \frac{18}{37} a^{25} + \frac{16}{37} a^{24} + \frac{6}{37} a^{23} - \frac{7}{37} a^{22} + \frac{2}{37} a^{21} + \frac{10}{37} a^{20} + \frac{13}{37} a^{19} - \frac{9}{37} a^{18} - \frac{8}{37} a^{17} - \frac{3}{37} a^{16} - \frac{15}{37} a^{15} - \frac{1}{37} a^{14} - \frac{5}{37} a^{13} + \frac{12}{37} a^{12} - \frac{14}{37} a^{11} + \frac{4}{37} a^{10} - \frac{17}{37} a^{9} - \frac{11}{37} a^{8} - \frac{18}{37} a^{7} - \frac{16}{37} a^{6} - \frac{6}{37} a^{5} + \frac{7}{37} a^{4} - \frac{2}{37} a^{3} - \frac{10}{37} a^{2} - \frac{13}{37} a + \frac{8}{37}$
Class group and class number
Not computed
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_{33}$ (as 33T162):
| A non-solvable group of order 8683317618811886495518194401280000000 |
| The 10143 conjugacy class representatives for $S_{33}$ are not computed |
| Character table for $S_{33}$ is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{3}$ | $17{,}\,16$ | $32{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $27{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | $20{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | $20{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | $32{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $16{,}\,{\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $33$ | $16{,}\,{\href{/LocalNumberField/37.11.0.1}{11} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | $26{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/47.13.0.1}{13} }$ | $18{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | $16^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 32159 | Data not computed | ||||||
| 1547725797949519945333 | Data not computed | ||||||
| 3511075445128887057511203662401094299 | Data not computed | ||||||