Properties

Label 33.1.102...432.1
Degree $33$
Signature $[1, 16]$
Discriminant $1.021\times 10^{69}$
Root discriminant \(123.36\)
Ramified primes see page
Class number not computed
Class group not computed
Galois group $S_{33}$ (as 33T162)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^33 + 5*x - 4)
 
gp: K = bnfinit(y^33 + 5*y - 4, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^33 + 5*x - 4);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^33 + 5*x - 4)
 

\( x^{33} + 5x - 4 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $33$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 16]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(1020845226788843432600084167631967987390906577760253363411159646994432\) \(\medspace = 2^{64}\cdot 163\cdot 181\cdot 50551\cdot 28444257707\cdot 13\!\cdots\!87\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(123.36\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(163\), \(181\), \(50551\), \(28444257707\), \(13045\!\cdots\!76787\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{55340\!\cdots\!07577}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $\frac{1}{13}a^{32}-\frac{6}{13}a^{31}-\frac{3}{13}a^{30}+\frac{5}{13}a^{29}-\frac{4}{13}a^{28}-\frac{2}{13}a^{27}-\frac{1}{13}a^{26}+\frac{6}{13}a^{25}+\frac{3}{13}a^{24}-\frac{5}{13}a^{23}+\frac{4}{13}a^{22}+\frac{2}{13}a^{21}+\frac{1}{13}a^{20}-\frac{6}{13}a^{19}-\frac{3}{13}a^{18}+\frac{5}{13}a^{17}-\frac{4}{13}a^{16}-\frac{2}{13}a^{15}-\frac{1}{13}a^{14}+\frac{6}{13}a^{13}+\frac{3}{13}a^{12}-\frac{5}{13}a^{11}+\frac{4}{13}a^{10}+\frac{2}{13}a^{9}+\frac{1}{13}a^{8}-\frac{6}{13}a^{7}-\frac{3}{13}a^{6}+\frac{5}{13}a^{5}-\frac{4}{13}a^{4}-\frac{2}{13}a^{3}-\frac{1}{13}a^{2}+\frac{6}{13}a-\frac{5}{13}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $16$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^33 + 5*x - 4)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^33 + 5*x - 4, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^33 + 5*x - 4);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^33 + 5*x - 4);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{33}$ (as 33T162):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 8683317618811886495518194401280000000
The 10143 conjugacy class representatives for $S_{33}$ are not computed
Character table for $S_{33}$ is not computed

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $26{,}\,{\href{/padicField/3.7.0.1}{7} }$ ${\href{/padicField/5.10.0.1}{10} }^{2}{,}\,{\href{/padicField/5.5.0.1}{5} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ $32{,}\,{\href{/padicField/7.1.0.1}{1} }$ $26{,}\,{\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{3}$ $17{,}\,{\href{/padicField/13.13.0.1}{13} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{3}$ $30{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ $22{,}\,{\href{/padicField/19.7.0.1}{7} }{,}\,{\href{/padicField/19.4.0.1}{4} }$ $30{,}\,{\href{/padicField/23.3.0.1}{3} }$ $17{,}\,{\href{/padicField/29.11.0.1}{11} }{,}\,{\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.2.0.1}{2} }$ $15{,}\,{\href{/padicField/31.9.0.1}{9} }{,}\,{\href{/padicField/31.5.0.1}{5} }{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ $29{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ $27{,}\,{\href{/padicField/41.3.0.1}{3} }^{2}$ $16{,}\,{\href{/padicField/43.13.0.1}{13} }{,}\,{\href{/padicField/43.4.0.1}{4} }$ $22{,}\,{\href{/padicField/47.3.0.1}{3} }^{3}{,}\,{\href{/padicField/47.2.0.1}{2} }$ ${\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.10.0.1}{10} }{,}\,{\href{/padicField/53.9.0.1}{9} }{,}\,{\href{/padicField/53.2.0.1}{2} }$ ${\href{/padicField/59.14.0.1}{14} }{,}\,{\href{/padicField/59.9.0.1}{9} }{,}\,{\href{/padicField/59.5.0.1}{5} }{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display $\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
Deg $32$$32$$1$$64$
\(163\) Copy content Toggle raw display $\Q_{163}$$x + 161$$1$$1$$0$Trivial$[\ ]$
$\Q_{163}$$x + 161$$1$$1$$0$Trivial$[\ ]$
163.2.1.1$x^{2} + 326$$2$$1$$1$$C_2$$[\ ]_{2}$
163.10.0.1$x^{10} + 3 x^{6} + 111 x^{5} + 120 x^{4} + 125 x^{3} + 15 x^{2} + 2$$1$$10$$0$$C_{10}$$[\ ]^{10}$
163.19.0.1$x^{19} + 8 x + 161$$1$$19$$0$$C_{19}$$[\ ]^{19}$
\(181\) Copy content Toggle raw display $\Q_{181}$$x + 179$$1$$1$$0$Trivial$[\ ]$
$\Q_{181}$$x + 179$$1$$1$$0$Trivial$[\ ]$
181.2.1.1$x^{2} + 181$$2$$1$$1$$C_2$$[\ ]_{2}$
181.7.0.1$x^{7} + 4 x + 179$$1$$7$$0$$C_7$$[\ ]^{7}$
181.8.0.1$x^{8} + 2 x^{4} + 108 x^{3} + 22 x^{2} + 149 x + 2$$1$$8$$0$$C_8$$[\ ]^{8}$
181.14.0.1$x^{14} - x + 2$$1$$14$$0$$C_{14}$$[\ ]^{14}$
\(50551\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $15$$1$$15$$0$$C_{15}$$[\ ]^{15}$
Deg $16$$1$$16$$0$$C_{16}$$[\ ]^{16}$
\(28444257707\) Copy content Toggle raw display $\Q_{28444257707}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $30$$1$$30$$0$$C_{30}$$[\ ]^{30}$
\(130\!\cdots\!787\) Copy content Toggle raw display Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $29$$1$$29$$0$$C_{29}$$[\ ]^{29}$