Normalized defining polynomial
\( x^{32} - 60 x^{30} + 1542 x^{28} - 22360 x^{26} + 203404 x^{24} - 1224784 x^{22} + 5034128 x^{20} - 14374848 x^{18} + 28730096 x^{16} - 40097856 x^{14} + 38567232 x^{12} - 24884992 x^{10} + 10286208 x^{8} - 2526720 x^{6} + 327168 x^{4} - 18432 x^{2} + 256 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{8} a^{12}$, $\frac{1}{8} a^{13}$, $\frac{1}{8} a^{14}$, $\frac{1}{8} a^{15}$, $\frac{1}{16} a^{16}$, $\frac{1}{16} a^{17}$, $\frac{1}{16} a^{18}$, $\frac{1}{16} a^{19}$, $\frac{1}{32} a^{20}$, $\frac{1}{32} a^{21}$, $\frac{1}{32} a^{22}$, $\frac{1}{32} a^{23}$, $\frac{1}{64} a^{24}$, $\frac{1}{64} a^{25}$, $\frac{1}{64} a^{26}$, $\frac{1}{64} a^{27}$, $\frac{1}{128} a^{28}$, $\frac{1}{128} a^{29}$, $\frac{1}{81786316286314649278336} a^{30} - \frac{115257091883288870435}{81786316286314649278336} a^{28} - \frac{162925060517792049881}{40893158143157324639168} a^{26} + \frac{143480371513740286843}{40893158143157324639168} a^{24} - \frac{93897984886449722031}{10223289535789331159792} a^{22} + \frac{194679272284885524673}{20446579071578662319584} a^{20} - \frac{157791301553184174681}{5111644767894665579896} a^{18} - \frac{171658091979459332379}{10223289535789331159792} a^{16} + \frac{132090643030447190705}{2555822383947332789948} a^{14} - \frac{203995289424305691375}{5111644767894665579896} a^{12} + \frac{141516308810630617407}{1277911191973666394974} a^{10} + \frac{156740116938400618071}{1277911191973666394974} a^{8} - \frac{45328647347476228489}{638955595986833197487} a^{6} - \frac{161564535550950583881}{1277911191973666394974} a^{4} + \frac{68017781521262364200}{638955595986833197487} a^{2} + \frac{94108401705839125592}{638955595986833197487}$, $\frac{1}{81786316286314649278336} a^{31} - \frac{115257091883288870435}{81786316286314649278336} a^{29} - \frac{162925060517792049881}{40893158143157324639168} a^{27} + \frac{143480371513740286843}{40893158143157324639168} a^{25} - \frac{93897984886449722031}{10223289535789331159792} a^{23} + \frac{194679272284885524673}{20446579071578662319584} a^{21} - \frac{157791301553184174681}{5111644767894665579896} a^{19} - \frac{171658091979459332379}{10223289535789331159792} a^{17} + \frac{132090643030447190705}{2555822383947332789948} a^{15} - \frac{203995289424305691375}{5111644767894665579896} a^{13} + \frac{141516308810630617407}{1277911191973666394974} a^{11} + \frac{156740116938400618071}{1277911191973666394974} a^{9} - \frac{45328647347476228489}{638955595986833197487} a^{7} - \frac{161564535550950583881}{1277911191973666394974} a^{5} + \frac{68017781521262364200}{638955595986833197487} a^{3} + \frac{94108401705839125592}{638955595986833197487} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $31$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 216292366437755300000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times C_8$ (as 32T43):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_4\times C_8$ |
| Character table for $C_4\times C_8$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |