Normalized defining polynomial
\( x^{32} - 480 x^{30} + 104400 x^{28} - 13608000 x^{26} + 1184625000 x^{24} - 72657000000 x^{22} + 3227647500000 x^{20} - 105129090000000 x^{18} + 2513242307812500 x^{16} - 43708561875000000 x^{14} + 542383517812500000 x^{12} - 4649001581250000000 x^{10} + 26150633894531250000 x^{8} - 88933329843750000000 x^{6} + 158809517578125000000 x^{4} - 112100835937500000000 x^{2} + 25046768244100781250 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{45} a^{4}$, $\frac{1}{45} a^{5}$, $\frac{1}{135} a^{6}$, $\frac{1}{135} a^{7}$, $\frac{1}{2025} a^{8}$, $\frac{1}{2025} a^{9}$, $\frac{1}{6075} a^{10}$, $\frac{1}{6075} a^{11}$, $\frac{1}{91125} a^{12}$, $\frac{1}{91125} a^{13}$, $\frac{1}{273375} a^{14}$, $\frac{1}{273375} a^{15}$, $\frac{1}{783219375} a^{16} - \frac{16}{52214625} a^{14} - \frac{53}{17404875} a^{12} - \frac{41}{1160325} a^{10} + \frac{74}{386775} a^{8} + \frac{8}{25785} a^{6} - \frac{4}{1719} a^{4} + \frac{22}{573} a^{2} - \frac{87}{191}$, $\frac{1}{675918320625} a^{17} - \frac{1036}{1001360475} a^{15} + \frac{34327}{15020407125} a^{13} - \frac{39769}{1001360475} a^{11} - \frac{16352}{333786825} a^{9} + \frac{21973}{22252455} a^{7} + \frac{25651}{2472495} a^{5} + \frac{5228}{164833} a^{3} - \frac{58533}{164833} a$, $\frac{1}{2027754961875} a^{18} - \frac{2}{15020407125} a^{16} - \frac{67507}{45061221375} a^{14} - \frac{21067}{15020407125} a^{12} - \frac{9448}{1001360475} a^{10} + \frac{9028}{66757365} a^{8} - \frac{1369}{824165} a^{6} + \frac{33544}{7417485} a^{4} - \frac{42136}{494499} a^{2} + \frac{3}{191}$, $\frac{1}{2027754961875} a^{19} + \frac{22351}{45061221375} a^{15} - \frac{63464}{15020407125} a^{13} + \frac{12556}{333786825} a^{11} + \frac{56957}{333786825} a^{9} - \frac{12463}{7417485} a^{7} + \frac{36328}{7417485} a^{5} + \frac{16920}{164833} a^{3} + \frac{9275}{164833} a$, $\frac{1}{30416324428125} a^{20} - \frac{29}{225306106875} a^{16} - \frac{5476}{5006802375} a^{14} + \frac{73051}{15020407125} a^{12} - \frac{24682}{1001360475} a^{10} - \frac{49471}{333786825} a^{8} - \frac{40372}{22252455} a^{6} + \frac{5021}{7417485} a^{4} + \frac{906}{164833} a^{2} - \frac{30}{191}$, $\frac{1}{30416324428125} a^{21} + \frac{15601}{45061221375} a^{15} - \frac{24109}{5006802375} a^{13} - \frac{23092}{1001360475} a^{11} + \frac{11402}{333786825} a^{9} + \frac{19372}{7417485} a^{7} - \frac{6469}{824165} a^{5} + \frac{48562}{494499} a^{3} - \frac{8438}{164833} a$, $\frac{1}{91248973284375} a^{22} + \frac{67}{135183664125} a^{16} + \frac{16562}{45061221375} a^{14} + \frac{45058}{15020407125} a^{12} + \frac{12809}{200272095} a^{10} - \frac{5837}{111262275} a^{8} - \frac{20249}{22252455} a^{6} - \frac{5651}{2472495} a^{4} - \frac{68848}{494499} a^{2} - \frac{1}{191}$, $\frac{1}{91248973284375} a^{23} - \frac{8291}{15020407125} a^{15} - \frac{16202}{3004081425} a^{13} + \frac{11729}{333786825} a^{11} + \frac{4184}{66757365} a^{9} + \frac{36281}{22252455} a^{7} - \frac{1828}{164833} a^{5} - \frac{48332}{494499} a^{3} - \frac{7435}{164833} a$, $\frac{1}{1368734599265625} a^{24} + \frac{154}{675918320625} a^{16} + \frac{5191}{3004081425} a^{14} + \frac{1828}{1001360475} a^{12} - \frac{439}{13351473} a^{10} + \frac{75116}{333786825} a^{8} + \frac{18931}{22252455} a^{6} - \frac{54373}{7417485} a^{4} + \frac{54608}{494499} a^{2} - \frac{40}{191}$, $\frac{1}{1368734599265625} a^{25} + \frac{4693}{45061221375} a^{15} + \frac{15718}{15020407125} a^{13} - \frac{488}{66757365} a^{11} - \frac{14668}{111262275} a^{9} - \frac{68251}{22252455} a^{7} - \frac{37159}{7417485} a^{5} - \frac{53066}{494499} a^{3} + \frac{78580}{164833} a$, $\frac{1}{4106203797796875} a^{26} + \frac{164}{675918320625} a^{16} + \frac{58868}{45061221375} a^{14} + \frac{44522}{15020407125} a^{12} - \frac{8629}{111262275} a^{10} + \frac{3092}{13351473} a^{8} - \frac{6526}{2472495} a^{6} + \frac{35857}{7417485} a^{4} + \frac{60457}{494499} a^{2} + \frac{57}{191}$, $\frac{1}{4106203797796875} a^{27} - \frac{14201}{15020407125} a^{15} + \frac{19216}{15020407125} a^{13} + \frac{15968}{1001360475} a^{11} - \frac{43133}{333786825} a^{9} - \frac{7196}{4450491} a^{7} - \frac{57127}{7417485} a^{5} - \frac{39224}{494499} a^{3} - \frac{76544}{164833} a$, $\frac{1}{61593056966953125} a^{28} - \frac{316}{675918320625} a^{16} - \frac{1058}{600816285} a^{14} - \frac{82414}{15020407125} a^{12} - \frac{61097}{1001360475} a^{10} - \frac{38569}{333786825} a^{8} - \frac{35762}{22252455} a^{6} - \frac{60799}{7417485} a^{4} + \frac{24907}{494499} a^{2} - \frac{61}{191}$, $\frac{1}{61593056966953125} a^{29} + \frac{316}{600816285} a^{15} + \frac{50773}{15020407125} a^{13} + \frac{12808}{200272095} a^{11} + \frac{13771}{66757365} a^{9} - \frac{16}{23301} a^{7} + \frac{25898}{7417485} a^{5} + \frac{36061}{494499} a^{3} + \frac{77058}{164833} a$, $\frac{1}{184779170900859375} a^{30} + \frac{269}{675918320625} a^{16} - \frac{35527}{45061221375} a^{14} - \frac{6877}{15020407125} a^{12} - \frac{28664}{1001360475} a^{10} + \frac{75488}{333786825} a^{8} + \frac{7672}{2472495} a^{6} + \frac{14486}{1483497} a^{4} - \frac{51529}{494499} a^{2} + \frac{77}{191}$, $\frac{1}{184779170900859375} a^{31} - \frac{4411}{9012244275} a^{15} - \frac{10192}{15020407125} a^{13} - \frac{44948}{1001360475} a^{11} + \frac{1579}{22252455} a^{9} - \frac{24178}{7417485} a^{7} - \frac{7934}{2472495} a^{5} + \frac{15133}{494499} a^{3} - \frac{12140}{164833} a$
Class group and class number
Not computed
Unit group
| Rank: | $31$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 32 |
| The 32 conjugacy class representatives for $C_{32}$ |
| Character table for $C_{32}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), \(\Q(\zeta_{32})^+\), 16.16.236118324143482260684800000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | $16^{2}$ | $32$ | $32$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{4}$ | $32$ | $16^{2}$ | $32$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ | $32$ | $16^{2}$ | $32$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{4}$ | $32$ | $32$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||