Normalized defining polynomial
\( x^{32} - 480 x^{30} + 104400 x^{28} - 13608000 x^{26} + 1184625000 x^{24} - 72657000000 x^{22} + 3227647500000 x^{20} - 105129090000000 x^{18} + 2513242307812500 x^{16} - 43708561875000000 x^{14} + 542383517812500000 x^{12} - 4649001581250000000 x^{10} + 26150633894531250000 x^{8} - 88933329843750000000 x^{6} + 158809517578125000000 x^{4} - 112100835937500000000 x^{2} + 1226865178750781250 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{45} a^{4}$, $\frac{1}{45} a^{5}$, $\frac{1}{135} a^{6}$, $\frac{1}{135} a^{7}$, $\frac{1}{2025} a^{8}$, $\frac{1}{2025} a^{9}$, $\frac{1}{6075} a^{10}$, $\frac{1}{6075} a^{11}$, $\frac{1}{91125} a^{12}$, $\frac{1}{91125} a^{13}$, $\frac{1}{273375} a^{14}$, $\frac{1}{273375} a^{15}$, $\frac{1}{3538839375} a^{16} - \frac{16}{235922625} a^{14} - \frac{343}{78640875} a^{12} - \frac{34}{5242725} a^{10} + \frac{103}{1747575} a^{8} - \frac{403}{116505} a^{6} - \frac{287}{38835} a^{4} - \frac{233}{2589} a^{2} + \frac{387}{863}$, $\frac{1}{675918320625} a^{17} + \frac{46586}{45061221375} a^{15} - \frac{33137}{15020407125} a^{13} + \frac{11783}{333786825} a^{11} + \frac{21034}{111262275} a^{9} - \frac{78073}{22252455} a^{7} - \frac{63286}{7417485} a^{5} - \frac{22228}{164833} a^{3} + \frac{79783}{164833} a$, $\frac{1}{2027754961875} a^{18} - \frac{2}{15020407125} a^{16} + \frac{68857}{45061221375} a^{14} - \frac{6233}{15020407125} a^{12} + \frac{73798}{1001360475} a^{10} + \frac{3859}{333786825} a^{8} + \frac{53797}{22252455} a^{6} - \frac{5468}{824165} a^{4} - \frac{7149}{164833} a^{2} - \frac{79}{863}$, $\frac{1}{2027754961875} a^{19} - \frac{24061}{45061221375} a^{15} - \frac{21569}{15020407125} a^{13} - \frac{41452}{1001360475} a^{11} + \frac{26239}{111262275} a^{9} - \frac{49787}{22252455} a^{7} + \frac{24203}{7417485} a^{5} + \frac{75814}{494499} a^{3} + \frac{77562}{164833} a$, $\frac{1}{30416324428125} a^{20} + \frac{1}{135183664125} a^{16} + \frac{39196}{45061221375} a^{14} - \frac{10888}{3004081425} a^{12} + \frac{54631}{1001360475} a^{10} - \frac{43484}{333786825} a^{8} - \frac{1577}{22252455} a^{6} - \frac{4865}{494499} a^{4} + \frac{15141}{164833} a^{2} - \frac{429}{863}$, $\frac{1}{30416324428125} a^{21} - \frac{28901}{45061221375} a^{15} - \frac{53588}{15020407125} a^{13} + \frac{42719}{1001360475} a^{11} - \frac{9776}{111262275} a^{9} + \frac{59122}{22252455} a^{7} + \frac{78622}{7417485} a^{5} + \frac{49177}{494499} a^{3} + \frac{13645}{164833} a$, $\frac{1}{91248973284375} a^{22} + \frac{82}{675918320625} a^{16} - \frac{59318}{45061221375} a^{14} + \frac{70154}{15020407125} a^{12} - \frac{296}{1001360475} a^{10} + \frac{4687}{66757365} a^{8} - \frac{778}{4450491} a^{6} - \frac{42334}{7417485} a^{4} - \frac{16398}{164833} a^{2} + \frac{402}{863}$, $\frac{1}{91248973284375} a^{23} + \frac{76622}{45061221375} a^{15} - \frac{14773}{15020407125} a^{13} + \frac{13616}{200272095} a^{11} - \frac{13702}{111262275} a^{9} - \frac{30391}{22252455} a^{7} + \frac{7459}{1483497} a^{5} - \frac{6865}{164833} a^{3} - \frac{36937}{164833} a$, $\frac{1}{1368734599265625} a^{24} + \frac{31}{675918320625} a^{16} - \frac{63196}{45061221375} a^{14} - \frac{34487}{15020407125} a^{12} + \frac{24478}{1001360475} a^{10} - \frac{1456}{66757365} a^{8} + \frac{49861}{22252455} a^{6} + \frac{38233}{7417485} a^{4} + \frac{3385}{494499} a^{2} + \frac{153}{863}$, $\frac{1}{1368734599265625} a^{25} - \frac{1591}{3004081425} a^{15} + \frac{418}{1668934125} a^{13} - \frac{82343}{1001360475} a^{11} + \frac{14554}{333786825} a^{9} - \frac{2371}{22252455} a^{7} + \frac{22103}{7417485} a^{5} - \frac{24080}{164833} a^{3} + \frac{28445}{164833} a$, $\frac{1}{4106203797796875} a^{26} + \frac{2}{27036732825} a^{16} + \frac{71758}{45061221375} a^{14} + \frac{15743}{15020407125} a^{12} + \frac{25543}{333786825} a^{10} - \frac{583}{2472495} a^{8} + \frac{45214}{22252455} a^{6} - \frac{1379}{1483497} a^{4} + \frac{70847}{494499} a^{2} + \frac{235}{863}$, $\frac{1}{4106203797796875} a^{27} + \frac{10024}{9012244275} a^{15} + \frac{24263}{15020407125} a^{13} - \frac{42491}{1001360475} a^{11} + \frac{12571}{66757365} a^{9} - \frac{264}{824165} a^{7} + \frac{2842}{824165} a^{5} - \frac{56446}{494499} a^{3} + \frac{11727}{164833} a$, $\frac{1}{61593056966953125} a^{28} + \frac{26}{225306106875} a^{16} - \frac{51607}{45061221375} a^{14} - \frac{20717}{15020407125} a^{12} + \frac{65669}{1001360475} a^{10} - \frac{51631}{333786825} a^{8} + \frac{29449}{22252455} a^{6} - \frac{11621}{2472495} a^{4} - \frac{8045}{494499} a^{2} - \frac{423}{863}$, $\frac{1}{61593056966953125} a^{29} - \frac{19663}{15020407125} a^{15} - \frac{2717}{556311375} a^{13} - \frac{241}{4450491} a^{11} - \frac{28597}{333786825} a^{9} + \frac{2258}{2472495} a^{7} - \frac{2903}{494499} a^{5} - \frac{81349}{494499} a^{3} - \frac{40213}{164833} a$, $\frac{1}{184779170900859375} a^{30} - \frac{41}{675918320625} a^{16} - \frac{11666}{45061221375} a^{14} - \frac{50902}{15020407125} a^{12} - \frac{104}{200272095} a^{10} - \frac{17383}{333786825} a^{8} - \frac{15088}{7417485} a^{6} + \frac{1927}{1483497} a^{4} - \frac{5828}{164833} a^{2} + \frac{332}{863}$, $\frac{1}{184779170900859375} a^{31} - \frac{79636}{45061221375} a^{15} + \frac{73978}{15020407125} a^{13} - \frac{34708}{1001360475} a^{11} - \frac{67529}{333786825} a^{9} + \frac{16801}{7417485} a^{7} + \frac{52237}{7417485} a^{5} + \frac{50633}{494499} a^{3} + \frac{37855}{164833} a$
Class group and class number
Not computed
Unit group
| Rank: | $31$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 32 |
| The 32 conjugacy class representatives for $C_{32}$ |
| Character table for $C_{32}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), \(\Q(\zeta_{32})^+\), 16.16.236118324143482260684800000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | $16^{2}$ | $32$ | $32$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{4}$ | $32$ | $16^{2}$ | $32$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ | $32$ | $16^{2}$ | $32$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{4}$ | $32$ | $32$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||