Normalized defining polynomial
\( x^{32} - 8 x^{31} - 52 x^{30} + 528 x^{29} + 942 x^{28} - 14808 x^{27} - 4040 x^{26} + 232952 x^{25} - 101787 x^{24} - 2290952 x^{23} + 1894744 x^{22} + 14880024 x^{21} - 15740682 x^{20} - 65768208 x^{19} + 78677084 x^{18} + 200834584 x^{17} - 255633450 x^{16} - 425796088 x^{15} + 553415588 x^{14} + 624757920 x^{13} - 797607810 x^{12} - 627979512 x^{11} + 749016552 x^{10} + 424971976 x^{9} - 437179375 x^{8} - 187713208 x^{7} + 144420248 x^{6} + 50201368 x^{5} - 21676018 x^{4} - 6390976 x^{3} + 552740 x^{2} + 49768 x - 2753 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{16} a^{24} - \frac{1}{2} a^{22} - \frac{1}{2} a^{21} - \frac{1}{4} a^{20} - \frac{1}{4} a^{18} - \frac{1}{8} a^{16} - \frac{1}{2} a^{15} + \frac{3}{8} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{16}$, $\frac{1}{16} a^{25} - \frac{1}{2} a^{23} - \frac{1}{2} a^{22} - \frac{1}{4} a^{21} - \frac{1}{4} a^{19} - \frac{1}{8} a^{17} - \frac{1}{2} a^{16} + \frac{3}{8} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{16} a$, $\frac{1}{32} a^{26} - \frac{1}{32} a^{24} - \frac{1}{4} a^{23} - \frac{3}{8} a^{22} - \frac{1}{4} a^{21} - \frac{7}{16} a^{18} - \frac{1}{4} a^{17} + \frac{1}{16} a^{16} - \frac{1}{4} a^{15} + \frac{3}{16} a^{14} - \frac{1}{2} a^{13} + \frac{1}{16} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{3}{8} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{3}{8} a^{4} - \frac{1}{4} a^{3} - \frac{7}{32} a^{2} - \frac{1}{2} a + \frac{7}{32}$, $\frac{1}{32} a^{27} - \frac{1}{32} a^{25} - \frac{3}{8} a^{23} - \frac{1}{4} a^{22} - \frac{7}{16} a^{19} - \frac{1}{4} a^{18} + \frac{1}{16} a^{17} + \frac{1}{4} a^{16} + \frac{3}{16} a^{15} - \frac{1}{2} a^{14} + \frac{1}{16} a^{13} + \frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{3}{8} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{3}{8} a^{5} - \frac{1}{4} a^{4} - \frac{7}{32} a^{3} - \frac{1}{2} a^{2} + \frac{7}{32} a + \frac{1}{4}$, $\frac{1}{224} a^{28} + \frac{1}{112} a^{26} + \frac{3}{112} a^{25} + \frac{3}{224} a^{24} - \frac{5}{14} a^{23} + \frac{15}{56} a^{22} + \frac{2}{7} a^{21} - \frac{27}{112} a^{20} - \frac{5}{14} a^{18} + \frac{9}{56} a^{17} - \frac{5}{28} a^{16} + \frac{9}{28} a^{15} - \frac{27}{56} a^{14} - \frac{25}{56} a^{13} + \frac{41}{112} a^{12} + \frac{5}{14} a^{11} - \frac{11}{56} a^{10} + \frac{13}{28} a^{9} - \frac{23}{56} a^{8} + \frac{3}{7} a^{7} - \frac{3}{56} a^{6} + \frac{3}{28} a^{5} + \frac{109}{224} a^{4} - \frac{5}{28} a^{3} - \frac{15}{112} a^{2} + \frac{47}{112} a + \frac{39}{224}$, $\frac{1}{224} a^{29} + \frac{1}{112} a^{27} - \frac{1}{224} a^{26} + \frac{3}{224} a^{25} - \frac{3}{224} a^{24} - \frac{27}{56} a^{23} + \frac{9}{56} a^{22} - \frac{55}{112} a^{21} - \frac{1}{4} a^{20} - \frac{5}{14} a^{19} + \frac{39}{112} a^{18} + \frac{1}{14} a^{17} - \frac{41}{112} a^{16} + \frac{15}{56} a^{15} + \frac{41}{112} a^{14} - \frac{15}{112} a^{13} + \frac{19}{112} a^{12} + \frac{3}{56} a^{11} - \frac{1}{28} a^{10} + \frac{19}{56} a^{9} + \frac{17}{56} a^{8} - \frac{3}{56} a^{7} + \frac{3}{28} a^{6} - \frac{59}{224} a^{5} + \frac{25}{56} a^{4} - \frac{43}{112} a^{3} + \frac{31}{224} a^{2} - \frac{73}{224} a + \frac{3}{32}$, $\frac{1}{62835579865409499735993938304396323244832} a^{30} + \frac{2076980401041237834708456010707553705}{1122063926168026780999891755435648629372} a^{29} - \frac{71830252900307680042841160238328427665}{62835579865409499735993938304396323244832} a^{28} + \frac{118016327213388568242922664471065070637}{7854447483176187466999242288049540405604} a^{27} + \frac{533696258922885043121761784133961759145}{62835579865409499735993938304396323244832} a^{26} - \frac{712518930573067507340744901514419285167}{31417789932704749867996969152198161622416} a^{25} + \frac{1588092889854073628963633943398523948729}{62835579865409499735993938304396323244832} a^{24} - \frac{2327098857903693068608952627971762761407}{7854447483176187466999242288049540405604} a^{23} - \frac{2128789005190940217888505664305200282051}{4488255704672107123999567021742594517488} a^{22} + \frac{547269917761548380692315073003390649137}{7854447483176187466999242288049540405604} a^{21} + \frac{988668935005284061456964120349059466341}{31417789932704749867996969152198161622416} a^{20} + \frac{1231654598355273374615104237343048714421}{3927223741588093733499621144024770202802} a^{19} - \frac{187204743742241077857875229118194142533}{1122063926168026780999891755435648629372} a^{18} - \frac{6751921422639978570056391662040402771351}{15708894966352374933998484576099080811208} a^{17} + \frac{370259625044496806480024675634364809727}{1963611870794046866749810572012385101401} a^{16} + \frac{586254882580369228623225453007539421658}{1963611870794046866749810572012385101401} a^{15} - \frac{15565405493794727158507286353830004506641}{31417789932704749867996969152198161622416} a^{14} - \frac{1170062713915351598268367103049549370823}{15708894966352374933998484576099080811208} a^{13} - \frac{4133240992909127754548511373230173426375}{31417789932704749867996969152198161622416} a^{12} + \frac{2887587573838769377788237875818029887281}{7854447483176187466999242288049540405604} a^{11} + \frac{411413629389797655338904922315525324705}{1122063926168026780999891755435648629372} a^{10} - \frac{513010951181824237496952271303157165091}{3927223741588093733499621144024770202802} a^{9} + \frac{3855682615201361059154752616721421700053}{7854447483176187466999242288049540405604} a^{8} + \frac{459660652579877379503644493592077106363}{3927223741588093733499621144024770202802} a^{7} - \frac{19856705796081189014178019655629719409223}{62835579865409499735993938304396323244832} a^{6} + \frac{2151401198505265634243132322989260029221}{7854447483176187466999242288049540405604} a^{5} + \frac{9669363482931362084197737929858220829283}{62835579865409499735993938304396323244832} a^{4} - \frac{238178946716079774536553900891033866859}{7854447483176187466999242288049540405604} a^{3} + \frac{22300519881723776697691847593634065649629}{62835579865409499735993938304396323244832} a^{2} + \frac{8034968975644500425523474493562629558717}{31417789932704749867996969152198161622416} a - \frac{24367933900260096605042009309328242293407}{62835579865409499735993938304396323244832}$, $\frac{1}{4226087720905031048686844143276366513965581225353991392} a^{31} - \frac{1527865248995}{4226087720905031048686844143276366513965581225353991392} a^{30} - \frac{2066546203673683604675616499427344262961112670765805}{2113043860452515524343422071638183256982790612676995696} a^{29} + \frac{2721825991579899294005777276706585628454456453011117}{2113043860452515524343422071638183256982790612676995696} a^{28} - \frac{44733892180385906881243377429894956815310842063238839}{4226087720905031048686844143276366513965581225353991392} a^{27} + \frac{1487259598256030984273007870106513773877807455264811}{1056521930226257762171711035819091628491395306338497848} a^{26} + \frac{8084513719434527480576317966665279035359905159912479}{2113043860452515524343422071638183256982790612676995696} a^{25} + \frac{50600363926425076953861341370486382476371067032676257}{4226087720905031048686844143276366513965581225353991392} a^{24} + \frac{1003791374822011803872612291566127266229505627419293041}{2113043860452515524343422071638183256982790612676995696} a^{23} + \frac{238666217757337655013822284483187174039936911798552991}{2113043860452515524343422071638183256982790612676995696} a^{22} - \frac{30073471316787089487603187145615261072160619087371747}{528260965113128881085855517909545814245697653169248924} a^{21} + \frac{225322170635935972423331304987857756515094661806594179}{528260965113128881085855517909545814245697653169248924} a^{20} - \frac{39511387242969814542699759321641072615958556275086687}{1056521930226257762171711035819091628491395306338497848} a^{19} - \frac{384358490382518063306296268984003886199947422115316599}{2113043860452515524343422071638183256982790612676995696} a^{18} - \frac{151384288451559682991141015103423272827139158390027659}{528260965113128881085855517909545814245697653169248924} a^{17} - \frac{746975094621085368955806619543130903230624777938575207}{2113043860452515524343422071638183256982790612676995696} a^{16} + \frac{728482411434015981640379207682107245257616039508942747}{2113043860452515524343422071638183256982790612676995696} a^{15} + \frac{176767667617959119909628803991308730311762896267502101}{528260965113128881085855517909545814245697653169248924} a^{14} - \frac{63585035786854051895001997885252644327852669202679939}{264130482556564440542927758954772907122848826584624462} a^{13} - \frac{508319824522336193892940816257089332113790859935053911}{2113043860452515524343422071638183256982790612676995696} a^{12} - \frac{304724243598959470724523868734819072500939102617620935}{1056521930226257762171711035819091628491395306338497848} a^{11} + \frac{303919637290558922724167657481166574727691768167498627}{1056521930226257762171711035819091628491395306338497848} a^{10} - \frac{350025855969356871105554469670620543309527814067853161}{1056521930226257762171711035819091628491395306338497848} a^{9} + \frac{249637758716092818750766409409166686251554128111882411}{528260965113128881085855517909545814245697653169248924} a^{8} - \frac{558332607926669757262448369387802237897872615666016691}{4226087720905031048686844143276366513965581225353991392} a^{7} - \frac{733265000327680327806086236033596538148630113045262927}{4226087720905031048686844143276366513965581225353991392} a^{6} - \frac{344683444189157749145100537986186213491722182214634593}{2113043860452515524343422071638183256982790612676995696} a^{5} - \frac{107925121348163617800841048774287808402599136056339903}{301863408636073646334774581662597608140398658953856528} a^{4} + \frac{624229880708303434253238892280657082689460352933749437}{4226087720905031048686844143276366513965581225353991392} a^{3} + \frac{170643082161178090581069830432707327704946448928303349}{528260965113128881085855517909545814245697653169248924} a^{2} - \frac{276754170676662884941409161767132485363343492682042959}{2113043860452515524343422071638183256982790612676995696} a + \frac{1107845989822302222088427859633646139144045731499959909}{4226087720905031048686844143276366513965581225353991392}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $31$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 269323465797089430000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times C_8$ (as 32T43):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_4\times C_8$ |
| Character table for $C_4\times C_8$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $17$ | 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |