magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -256, 0, 5440, 0, -45696, 0, 201552, 0, -537472, 0, 940576, 0, -1136960, 0, 980628, 0, -615296, 0, 283360, 0, -95680, 0, 23400, 0, -4032, 0, 464, 0, -32, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^32 - 32*x^30 + 464*x^28 - 4032*x^26 + 23400*x^24 - 95680*x^22 + 283360*x^20 - 615296*x^18 + 980628*x^16 - 1136960*x^14 + 940576*x^12 - 537472*x^10 + 201552*x^8 - 45696*x^6 + 5440*x^4 - 256*x^2 + 1)
gp: K = bnfinit(x^32 - 32*x^30 + 464*x^28 - 4032*x^26 + 23400*x^24 - 95680*x^22 + 283360*x^20 - 615296*x^18 + 980628*x^16 - 1136960*x^14 + 940576*x^12 - 537472*x^10 + 201552*x^8 - 45696*x^6 + 5440*x^4 - 256*x^2 + 1, 1)
\( x^{32} - 32 x^{30} + 464 x^{28} - 4032 x^{26} + 23400 x^{24} - 95680 x^{22} + 283360 x^{20} - 615296 x^{18} + 980628 x^{16} - 1136960 x^{14} + 940576 x^{12} - 537472 x^{10} + 201552 x^{8} - 45696 x^{6} + 5440 x^{4} - 256 x^{2} + 1 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
| Degree: | | $32$ |
|
| Signature: | | $[32, 0]$ |
|
| Discriminant: | | \(62912853223226562597999842165869507304166444172308381696=2^{160}\cdot 3^{16}\) | magma: Discriminant(Integers(K));
|
| Root discriminant: | | $55.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
|
| Ramified primes: | | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
gp: factor(abs(K.disc))[,1]~
|
| This field is Galois and abelian over $\Q$. |
| Conductor: | | \(192=2^{6}\cdot 3\) |
| Dirichlet character group:
| |
$\lbrace$$\chi_{192}(1,·)$, $\chi_{192}(131,·)$, $\chi_{192}(133,·)$, $\chi_{192}(11,·)$, $\chi_{192}(13,·)$, $\chi_{192}(143,·)$, $\chi_{192}(145,·)$, $\chi_{192}(23,·)$, $\chi_{192}(25,·)$, $\chi_{192}(155,·)$, $\chi_{192}(157,·)$, $\chi_{192}(35,·)$, $\chi_{192}(37,·)$, $\chi_{192}(167,·)$, $\chi_{192}(169,·)$, $\chi_{192}(47,·)$, $\chi_{192}(49,·)$, $\chi_{192}(179,·)$, $\chi_{192}(181,·)$, $\chi_{192}(59,·)$, $\chi_{192}(61,·)$, $\chi_{192}(191,·)$, $\chi_{192}(71,·)$, $\chi_{192}(73,·)$, $\chi_{192}(83,·)$, $\chi_{192}(85,·)$, $\chi_{192}(95,·)$, $\chi_{192}(97,·)$, $\chi_{192}(107,·)$, $\chi_{192}(109,·)$, $\chi_{192}(119,·)$, $\chi_{192}(121,·)$$\rbrace$
|
| This is not a CM field. |
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$
Trivial group, which has order $1$
(assuming GRH)
sage: K.class_group().invariants()
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | | $31$
|
|
| Torsion generator: | | \( -1 \) (order $2$)
| magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
|
| Fundamental units: | | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
(assuming GRH)
| magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
|
| Regulator: | | \( 969667117813122800 \)
(assuming GRH)
|
|
$C_2\times C_{16}$ (as 32T32):
sage: K.galois_group(type='pari')
|
\(\Q(\sqrt{6}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{2}, \sqrt{3})\), \(\Q(\zeta_{16})^+\), 4.4.18432.1, \(\Q(\zeta_{48})^+\), \(\Q(\zeta_{32})^+\), 8.8.173946175488.1, \(\Q(\zeta_{96})^+\), 16.16.3965881151245791007623610368.1, \(\Q(\zeta_{64})^+\)
|
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| $p$ |
2 |
3 |
5 |
7 |
11 |
13 |
17 |
19 |
23 |
29 |
31 |
37 |
41 |
43 |
47 |
53 |
59 |
| Cycle type |
R |
R |
$16^{2}$ |
${\href{/LocalNumberField/7.8.0.1}{8} }^{4}$ |
$16^{2}$ |
$16^{2}$ |
${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ |
$16^{2}$ |
${\href{/LocalNumberField/23.8.0.1}{8} }^{4}$ |
$16^{2}$ |
${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ |
$16^{2}$ |
${\href{/LocalNumberField/41.8.0.1}{8} }^{4}$ |
$16^{2}$ |
${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ |
$16^{2}$ |
$16^{2}$ |
In the table, R denotes a ramified prime.
Cycle lengths which are repeated in a cycle type are indicated by
exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])