Normalized defining polynomial
\( x^{32} - 1056 x^{30} + 505296 x^{28} - 144897984 x^{26} + 27750551400 x^{24} - 3744474402240 x^{22} + 365950363695840 x^{20} - 26222957489976192 x^{18} + 1379163670488435348 x^{16} - 52768001305644482880 x^{14} + 1440566435644094382624 x^{12} - 27164967072145779786624 x^{10} + 336166467517804024859472 x^{8} - 2515124016084622825669248 x^{6} + 9880844348903875386557760 x^{4} - 15344370047709547659124992 x^{2} + 3955970402925117755868162 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{33} a^{2}$, $\frac{1}{33} a^{3}$, $\frac{1}{1089} a^{4}$, $\frac{1}{1089} a^{5}$, $\frac{1}{35937} a^{6}$, $\frac{1}{35937} a^{7}$, $\frac{1}{1185921} a^{8}$, $\frac{1}{1185921} a^{9}$, $\frac{1}{39135393} a^{10}$, $\frac{1}{39135393} a^{11}$, $\frac{1}{1291467969} a^{12}$, $\frac{1}{1291467969} a^{13}$, $\frac{1}{42618442977} a^{14}$, $\frac{1}{42618442977} a^{15}$, $\frac{1}{1406408618241} a^{16}$, $\frac{1}{1406408618241} a^{17}$, $\frac{1}{46411484401953} a^{18}$, $\frac{1}{46411484401953} a^{19}$, $\frac{1}{1531578985264449} a^{20}$, $\frac{1}{1531578985264449} a^{21}$, $\frac{1}{50542106513726817} a^{22}$, $\frac{1}{50542106513726817} a^{23}$, $\frac{1}{1667889514952984961} a^{24}$, $\frac{1}{1667889514952984961} a^{25}$, $\frac{1}{55040353993448503713} a^{26}$, $\frac{1}{55040353993448503713} a^{27}$, $\frac{1}{1816331681783800622529} a^{28}$, $\frac{1}{1816331681783800622529} a^{29}$, $\frac{1}{59938945498865420543457} a^{30}$, $\frac{1}{59938945498865420543457} a^{31}$
Class group and class number
Not computed
Unit group
| Rank: | $31$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 32 |
| The 32 conjugacy class representatives for $C_{32}$ |
| Character table for $C_{32}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), \(\Q(\zeta_{32})^+\), \(\Q(\zeta_{64})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $32$ | $16^{2}$ | R | $32$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{4}$ | $32$ | $16^{2}$ | $32$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ | $32$ | $16^{2}$ | $32$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{4}$ | $32$ | $32$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 11 | Data not computed | ||||||