Normalized defining polynomial
\( x^{32} - 80 x^{30} + 2752 x^{28} - 54104 x^{26} + 680298 x^{24} - 5793716 x^{22} + 34483830 x^{20} - 145742210 x^{18} + 439508851 x^{16} - 941151044 x^{14} + 1409169330 x^{12} - 1431708442 x^{10} + 934419815 x^{8} - 352066990 x^{6} + 59165083 x^{4} - 945954 x^{2} + 3721 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[32, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5981643090147991811559885370844487936000000000000000000000000=2^{32}\cdot 3^{16}\cdot 5^{24}\cdot 13^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(780=2^{2}\cdot 3\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{780}(1,·)$, $\chi_{780}(131,·)$, $\chi_{780}(649,·)$, $\chi_{780}(599,·)$, $\chi_{780}(151,·)$, $\chi_{780}(281,·)$, $\chi_{780}(31,·)$, $\chi_{780}(161,·)$, $\chi_{780}(547,·)$, $\chi_{780}(677,·)$, $\chi_{780}(47,·)$, $\chi_{780}(181,·)$, $\chi_{780}(311,·)$, $\chi_{780}(697,·)$, $\chi_{780}(53,·)$, $\chi_{780}(577,·)$, $\chi_{780}(707,·)$, $\chi_{780}(73,·)$, $\chi_{780}(203,·)$, $\chi_{780}(77,·)$, $\chi_{780}(83,·)$, $\chi_{780}(469,·)$, $\chi_{780}(727,·)$, $\chi_{780}(733,·)$, $\chi_{780}(103,·)$, $\chi_{780}(779,·)$, $\chi_{780}(233,·)$, $\chi_{780}(619,·)$, $\chi_{780}(749,·)$, $\chi_{780}(499,·)$, $\chi_{780}(629,·)$, $\chi_{780}(703,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{4} a^{16} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{17} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{4} a^{18} - \frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{4} a^{10} - \frac{1}{2} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{19} - \frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{4} a^{11} - \frac{1}{2} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3}$, $\frac{1}{4} a^{20} - \frac{1}{2} a^{14} - \frac{1}{4} a^{12} - \frac{1}{2} a^{10} + \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{21} - \frac{1}{2} a^{15} - \frac{1}{4} a^{13} - \frac{1}{2} a^{11} + \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{22} - \frac{1}{4} a^{14} - \frac{1}{2} a^{12} + \frac{1}{4} a^{10} + \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2}$, $\frac{1}{4} a^{23} - \frac{1}{4} a^{15} - \frac{1}{2} a^{13} + \frac{1}{4} a^{11} + \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a$, $\frac{1}{24} a^{24} - \frac{1}{24} a^{22} + \frac{1}{24} a^{20} - \frac{1}{8} a^{18} - \frac{1}{12} a^{16} - \frac{1}{24} a^{14} - \frac{5}{12} a^{12} - \frac{5}{24} a^{10} + \frac{5}{12} a^{8} - \frac{7}{24} a^{6} + \frac{1}{8} a^{4} + \frac{1}{12} a^{2} + \frac{7}{24}$, $\frac{1}{24} a^{25} - \frac{1}{24} a^{23} + \frac{1}{24} a^{21} - \frac{1}{8} a^{19} - \frac{1}{12} a^{17} - \frac{1}{24} a^{15} - \frac{5}{12} a^{13} - \frac{5}{24} a^{11} + \frac{5}{12} a^{9} - \frac{7}{24} a^{7} + \frac{1}{8} a^{5} + \frac{1}{12} a^{3} + \frac{7}{24} a$, $\frac{1}{24} a^{26} - \frac{1}{12} a^{20} + \frac{1}{24} a^{18} - \frac{1}{8} a^{16} + \frac{1}{24} a^{14} - \frac{1}{8} a^{12} - \frac{1}{24} a^{10} - \frac{3}{8} a^{8} - \frac{5}{12} a^{6} - \frac{1}{24} a^{4} - \frac{3}{8} a^{2} + \frac{7}{24}$, $\frac{1}{1464} a^{27} + \frac{9}{488} a^{25} - \frac{43}{488} a^{23} - \frac{71}{1464} a^{21} - \frac{91}{732} a^{19} + \frac{55}{488} a^{17} + \frac{65}{183} a^{15} + \frac{65}{488} a^{13} + \frac{35}{366} a^{11} + \frac{119}{488} a^{9} + \frac{497}{1464} a^{7} - \frac{77}{183} a^{5} - \frac{45}{488} a^{3} - \frac{313}{732} a$, $\frac{1}{2043986586264} a^{28} - \frac{2202749249}{340664431044} a^{26} + \frac{19221316055}{2043986586264} a^{24} - \frac{6539112937}{291998083752} a^{22} + \frac{2110306579}{28388702587} a^{20} - \frac{7499892676}{85166107761} a^{18} - \frac{2166377495}{227109620696} a^{16} + \frac{244931586089}{1021993293132} a^{14} + \frac{21584428069}{681328862088} a^{12} - \frac{463893860093}{1021993293132} a^{10} - \frac{13629457666}{36499760469} a^{8} - \frac{148331771303}{340664431044} a^{6} + \frac{58432644875}{170332215522} a^{4} - \frac{88436628445}{291998083752} a^{2} + \frac{8844223547}{33507976824}$, $\frac{1}{2043986586264} a^{29} - \frac{217001395}{681328862088} a^{27} + \frac{8912575177}{1021993293132} a^{25} + \frac{14780871523}{145999041876} a^{23} - \frac{19626315721}{681328862088} a^{21} + \frac{3669432932}{85166107761} a^{19} + \frac{15012858149}{170332215522} a^{17} + \frac{90203334818}{255498323283} a^{15} - \frac{35048559815}{340664431044} a^{13} - \frac{265638330551}{1021993293132} a^{11} + \frac{45140922511}{291998083752} a^{9} + \frac{65084057571}{227109620696} a^{7} + \frac{4783422670}{85166107761} a^{5} - \frac{68052857261}{145999041876} a^{3} + \frac{1019778637511}{2043986586264} a$, $\frac{1}{369348821827323649611139209384} a^{30} + \frac{34388177716710151}{369348821827323649611139209384} a^{28} - \frac{586288948913196324131309377}{92337205456830912402784802346} a^{26} - \frac{650427821949456491375342477}{92337205456830912402784802346} a^{24} + \frac{42716830374558276838884298343}{369348821827323649611139209384} a^{22} - \frac{165304832297567076818107585}{10259689495203434711420533594} a^{20} - \frac{1206053394844608006255408883}{10259689495203434711420533594} a^{18} - \frac{870762575636082948626328131}{13191029350975844628969257478} a^{16} - \frac{79999085996252466713244957289}{184674410913661824805569604692} a^{14} - \frac{11766208030655145386965551311}{26382058701951689257938514956} a^{12} + \frac{16260110483748163866332872853}{41038757980813738845682134376} a^{10} + \frac{3010047848938728590831791693}{6054898718480715567395724744} a^{8} + \frac{10053470947299369234564177551}{30779068485610304134261600782} a^{6} + \frac{34369112373109400592781137967}{184674410913661824805569604692} a^{4} + \frac{77551890967426462473056398267}{369348821827323649611139209384} a^{2} + \frac{1250806643998409284427613703}{3027449359240357783697862372}$, $\frac{1}{369348821827323649611139209384} a^{31} + \frac{34388177716710151}{369348821827323649611139209384} a^{29} - \frac{74568776222516958751840729}{369348821827323649611139209384} a^{27} - \frac{2853998734401189114142858439}{369348821827323649611139209384} a^{25} - \frac{989086811765976414947769973}{92337205456830912402784802346} a^{23} - \frac{14682126133273416736772213747}{123116273942441216537046403128} a^{21} + \frac{139479653706662119832529949}{10259689495203434711420533594} a^{19} + \frac{1670821820924372527742238895}{52764117403903378515877029912} a^{17} - \frac{12890625199757869174609008043}{184674410913661824805569604692} a^{15} - \frac{4250446928053250127760193467}{52764117403903378515877029912} a^{13} + \frac{41884474577419232202797932045}{123116273942441216537046403128} a^{11} - \frac{41527456137246202036657041997}{184674410913661824805569604692} a^{9} + \frac{36765955352284847240156366947}{123116273942441216537046403128} a^{7} - \frac{18611251413596860621931453543}{184674410913661824805569604692} a^{5} + \frac{8627595614611334973870319679}{184674410913661824805569604692} a^{3} + \frac{27355440642850515513635660869}{184674410913661824805569604692} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $31$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 278879965707408670000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_4^2$ (as 32T36):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2\times C_4^2$ |
| Character table for $C_2\times C_4^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||