Normalized defining polynomial
\( x^{32} - 56 x^{30} + 1316 x^{28} - 17104 x^{26} + 136570 x^{24} - 705040 x^{22} + 2417360 x^{20} - 5581792 x^{18} + 8730872 x^{16} - 9255712 x^{14} + 6621008 x^{12} - 3155840 x^{10} + 976032 x^{8} - 186432 x^{6} + 20096 x^{4} - 1024 x^{2} + 16 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[32, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(54568201713507127370225565301626372096000000000000000000000000=2^{124}\cdot 3^{16}\cdot 5^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $84.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(480=2^{5}\cdot 3\cdot 5\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{480}(1,·)$, $\chi_{480}(131,·)$, $\chi_{480}(257,·)$, $\chi_{480}(137,·)$, $\chi_{480}(11,·)$, $\chi_{480}(17,·)$, $\chi_{480}(403,·)$, $\chi_{480}(409,·)$, $\chi_{480}(283,·)$, $\chi_{480}(289,·)$, $\chi_{480}(163,·)$, $\chi_{480}(113,·)$, $\chi_{480}(169,·)$, $\chi_{480}(427,·)$, $\chi_{480}(307,·)$, $\chi_{480}(49,·)$, $\chi_{480}(179,·)$, $\chi_{480}(59,·)$, $\chi_{480}(67,·)$, $\chi_{480}(419,·)$, $\chi_{480}(43,·)$, $\chi_{480}(377,·)$, $\chi_{480}(473,·)$, $\chi_{480}(353,·)$, $\chi_{480}(187,·)$, $\chi_{480}(361,·)$, $\chi_{480}(241,·)$, $\chi_{480}(371,·)$, $\chi_{480}(233,·)$, $\chi_{480}(121,·)$, $\chi_{480}(251,·)$, $\chi_{480}(299,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{2} a^{13}$, $\frac{1}{2} a^{14}$, $\frac{1}{2} a^{15}$, $\frac{1}{4} a^{16}$, $\frac{1}{4} a^{17}$, $\frac{1}{4} a^{18}$, $\frac{1}{4} a^{19}$, $\frac{1}{124} a^{20} + \frac{9}{124} a^{18} + \frac{11}{124} a^{16} + \frac{7}{31} a^{14} - \frac{7}{62} a^{12} + \frac{1}{31} a^{10} + \frac{4}{31} a^{8} + \frac{9}{31} a^{6} - \frac{9}{31} a^{4} + \frac{13}{31} a^{2} - \frac{12}{31}$, $\frac{1}{124} a^{21} + \frac{9}{124} a^{19} + \frac{11}{124} a^{17} + \frac{7}{31} a^{15} - \frac{7}{62} a^{13} + \frac{1}{31} a^{11} + \frac{4}{31} a^{9} + \frac{9}{31} a^{7} - \frac{9}{31} a^{5} + \frac{13}{31} a^{3} - \frac{12}{31} a$, $\frac{1}{124} a^{22} - \frac{2}{31} a^{18} - \frac{9}{124} a^{16} - \frac{9}{62} a^{14} + \frac{3}{62} a^{12} - \frac{5}{31} a^{10} + \frac{4}{31} a^{8} + \frac{3}{31} a^{6} + \frac{1}{31} a^{4} - \frac{5}{31} a^{2} + \frac{15}{31}$, $\frac{1}{124} a^{23} - \frac{2}{31} a^{19} - \frac{9}{124} a^{17} - \frac{9}{62} a^{15} + \frac{3}{62} a^{13} - \frac{5}{31} a^{11} + \frac{4}{31} a^{9} + \frac{3}{31} a^{7} + \frac{1}{31} a^{5} - \frac{5}{31} a^{3} + \frac{15}{31} a$, $\frac{1}{248} a^{24} - \frac{15}{124} a^{18} + \frac{1}{31} a^{16} + \frac{11}{62} a^{14} - \frac{1}{31} a^{12} + \frac{6}{31} a^{10} + \frac{2}{31} a^{8} - \frac{10}{31} a^{6} + \frac{8}{31} a^{4} + \frac{13}{31} a^{2} + \frac{14}{31}$, $\frac{1}{248} a^{25} - \frac{15}{124} a^{19} + \frac{1}{31} a^{17} + \frac{11}{62} a^{15} - \frac{1}{31} a^{13} + \frac{6}{31} a^{11} + \frac{2}{31} a^{9} - \frac{10}{31} a^{7} + \frac{8}{31} a^{5} + \frac{13}{31} a^{3} + \frac{14}{31} a$, $\frac{1}{248} a^{26} + \frac{15}{124} a^{18} + \frac{1}{124} a^{16} - \frac{9}{62} a^{14} + \frac{3}{62} a^{10} + \frac{7}{62} a^{8} - \frac{12}{31} a^{6} + \frac{2}{31} a^{4} - \frac{8}{31} a^{2} + \frac{6}{31}$, $\frac{1}{248} a^{27} + \frac{15}{124} a^{19} + \frac{1}{124} a^{17} - \frac{9}{62} a^{15} + \frac{3}{62} a^{11} + \frac{7}{62} a^{9} - \frac{12}{31} a^{7} + \frac{2}{31} a^{5} - \frac{8}{31} a^{3} + \frac{6}{31} a$, $\frac{1}{67208} a^{28} + \frac{71}{67208} a^{26} + \frac{63}{33604} a^{24} + \frac{105}{33604} a^{22} + \frac{91}{33604} a^{20} - \frac{2685}{33604} a^{18} + \frac{701}{8401} a^{16} - \frac{1427}{8401} a^{14} + \frac{1844}{8401} a^{12} - \frac{3661}{16802} a^{10} - \frac{1128}{8401} a^{8} + \frac{966}{8401} a^{6} - \frac{2134}{8401} a^{4} - \frac{3979}{8401} a^{2} + \frac{4062}{8401}$, $\frac{1}{67208} a^{29} + \frac{71}{67208} a^{27} + \frac{63}{33604} a^{25} + \frac{105}{33604} a^{23} + \frac{91}{33604} a^{21} - \frac{2685}{33604} a^{19} + \frac{701}{8401} a^{17} - \frac{1427}{8401} a^{15} + \frac{1844}{8401} a^{13} - \frac{3661}{16802} a^{11} - \frac{1128}{8401} a^{9} + \frac{966}{8401} a^{7} - \frac{2134}{8401} a^{5} - \frac{3979}{8401} a^{3} + \frac{4062}{8401} a$, $\frac{1}{1449630218672632} a^{30} - \frac{4430714619}{1449630218672632} a^{28} + \frac{382352027305}{1449630218672632} a^{26} - \frac{1903872187799}{1449630218672632} a^{24} + \frac{449722219516}{181203777334079} a^{22} + \frac{353154054826}{181203777334079} a^{20} - \frac{670012274927}{724815109336316} a^{18} - \frac{16360846901478}{181203777334079} a^{16} - \frac{85420554008799}{362407554668158} a^{14} + \frac{6207754112327}{181203777334079} a^{12} + \frac{6323358333593}{181203777334079} a^{10} - \frac{62609806998697}{362407554668158} a^{8} + \frac{39211280462097}{181203777334079} a^{6} - \frac{58579075210306}{181203777334079} a^{4} - \frac{13417289397663}{181203777334079} a^{2} + \frac{13074487803436}{181203777334079}$, $\frac{1}{1449630218672632} a^{31} - \frac{4430714619}{1449630218672632} a^{29} + \frac{382352027305}{1449630218672632} a^{27} - \frac{1903872187799}{1449630218672632} a^{25} + \frac{449722219516}{181203777334079} a^{23} + \frac{353154054826}{181203777334079} a^{21} - \frac{670012274927}{724815109336316} a^{19} - \frac{16360846901478}{181203777334079} a^{17} - \frac{85420554008799}{362407554668158} a^{15} + \frac{6207754112327}{181203777334079} a^{13} + \frac{6323358333593}{181203777334079} a^{11} - \frac{62609806998697}{362407554668158} a^{9} + \frac{39211280462097}{181203777334079} a^{7} - \frac{58579075210306}{181203777334079} a^{5} - \frac{13417289397663}{181203777334079} a^{3} + \frac{13074487803436}{181203777334079} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $31$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 370118030677416540000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times C_8$ (as 32T43):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_4\times C_8$ |
| Character table for $C_4\times C_8$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||