Properties

Label 32.32.5381802873...0625.1
Degree $32$
Signature $[32, 0]$
Discriminant $3^{16}\cdot 5^{16}\cdot 17^{30}$
Root discriminant $55.16$
Ramified primes $3, 5, 17$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2\times C_{16}$ (as 32T32)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -16, -304, 496, 10596, 3238, -112748, -76972, 590580, 442548, -1825949, -1295443, 3639474, 2282032, -4899810, -2594590, 4562969, 1964808, -2965533, -1000725, 1341822, 341097, -417686, -76589, 87635, 11046, -12023, -977, 1025, 48, -49, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^32 - x^31 - 49*x^30 + 48*x^29 + 1025*x^28 - 977*x^27 - 12023*x^26 + 11046*x^25 + 87635*x^24 - 76589*x^23 - 417686*x^22 + 341097*x^21 + 1341822*x^20 - 1000725*x^19 - 2965533*x^18 + 1964808*x^17 + 4562969*x^16 - 2594590*x^15 - 4899810*x^14 + 2282032*x^13 + 3639474*x^12 - 1295443*x^11 - 1825949*x^10 + 442548*x^9 + 590580*x^8 - 76972*x^7 - 112748*x^6 + 3238*x^5 + 10596*x^4 + 496*x^3 - 304*x^2 - 16*x + 1)
 
gp: K = bnfinit(x^32 - x^31 - 49*x^30 + 48*x^29 + 1025*x^28 - 977*x^27 - 12023*x^26 + 11046*x^25 + 87635*x^24 - 76589*x^23 - 417686*x^22 + 341097*x^21 + 1341822*x^20 - 1000725*x^19 - 2965533*x^18 + 1964808*x^17 + 4562969*x^16 - 2594590*x^15 - 4899810*x^14 + 2282032*x^13 + 3639474*x^12 - 1295443*x^11 - 1825949*x^10 + 442548*x^9 + 590580*x^8 - 76972*x^7 - 112748*x^6 + 3238*x^5 + 10596*x^4 + 496*x^3 - 304*x^2 - 16*x + 1, 1)
 

Normalized defining polynomial

\( x^{32} - x^{31} - 49 x^{30} + 48 x^{29} + 1025 x^{28} - 977 x^{27} - 12023 x^{26} + 11046 x^{25} + 87635 x^{24} - 76589 x^{23} - 417686 x^{22} + 341097 x^{21} + 1341822 x^{20} - 1000725 x^{19} - 2965533 x^{18} + 1964808 x^{17} + 4562969 x^{16} - 2594590 x^{15} - 4899810 x^{14} + 2282032 x^{13} + 3639474 x^{12} - 1295443 x^{11} - 1825949 x^{10} + 442548 x^{9} + 590580 x^{8} - 76972 x^{7} - 112748 x^{6} + 3238 x^{5} + 10596 x^{4} + 496 x^{3} - 304 x^{2} - 16 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $32$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[32, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(53818028735688890166227692218037660486426411285400390625=3^{16}\cdot 5^{16}\cdot 17^{30}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $55.16$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(255=3\cdot 5\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{255}(1,·)$, $\chi_{255}(131,·)$, $\chi_{255}(4,·)$, $\chi_{255}(11,·)$, $\chi_{255}(14,·)$, $\chi_{255}(16,·)$, $\chi_{255}(146,·)$, $\chi_{255}(19,·)$, $\chi_{255}(151,·)$, $\chi_{255}(154,·)$, $\chi_{255}(29,·)$, $\chi_{255}(164,·)$, $\chi_{255}(166,·)$, $\chi_{255}(41,·)$, $\chi_{255}(44,·)$, $\chi_{255}(176,·)$, $\chi_{255}(49,·)$, $\chi_{255}(56,·)$, $\chi_{255}(64,·)$, $\chi_{255}(194,·)$, $\chi_{255}(196,·)$, $\chi_{255}(71,·)$, $\chi_{255}(74,·)$, $\chi_{255}(76,·)$, $\chi_{255}(209,·)$, $\chi_{255}(94,·)$, $\chi_{255}(224,·)$, $\chi_{255}(229,·)$, $\chi_{255}(106,·)$, $\chi_{255}(116,·)$, $\chi_{255}(169,·)$, $\chi_{255}(121,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $\frac{1}{101} a^{30} + \frac{1}{101} a^{29} - \frac{18}{101} a^{28} + \frac{41}{101} a^{27} - \frac{21}{101} a^{26} - \frac{32}{101} a^{25} + \frac{30}{101} a^{24} - \frac{23}{101} a^{23} - \frac{17}{101} a^{22} - \frac{25}{101} a^{21} + \frac{12}{101} a^{20} + \frac{26}{101} a^{19} + \frac{33}{101} a^{18} - \frac{5}{101} a^{17} - \frac{34}{101} a^{16} + \frac{44}{101} a^{15} + \frac{2}{101} a^{14} - \frac{34}{101} a^{13} - \frac{7}{101} a^{12} + \frac{48}{101} a^{11} + \frac{34}{101} a^{10} + \frac{29}{101} a^{9} - \frac{37}{101} a^{8} + \frac{26}{101} a^{7} + \frac{22}{101} a^{6} - \frac{20}{101} a^{5} - \frac{40}{101} a^{4} - \frac{48}{101} a^{3} + \frac{48}{101} a^{2} + \frac{8}{101} a - \frac{7}{101}$, $\frac{1}{7097793691045944993173260257257102677872866428523} a^{31} + \frac{23534427774858016893658310083855648654158253861}{7097793691045944993173260257257102677872866428523} a^{30} - \frac{2017915299257623649042539877064414337538160700978}{7097793691045944993173260257257102677872866428523} a^{29} - \frac{716073040426939999052188884029360055053250826932}{7097793691045944993173260257257102677872866428523} a^{28} - \frac{829019427359065784324047980475461454786034048741}{7097793691045944993173260257257102677872866428523} a^{27} - \frac{1855668104771687097924354472058069306279299607058}{7097793691045944993173260257257102677872866428523} a^{26} - \frac{2483741920075166854570764834923808511269135467871}{7097793691045944993173260257257102677872866428523} a^{25} + \frac{281021823238663430539741989639677509334709688003}{7097793691045944993173260257257102677872866428523} a^{24} - \frac{1315453739534597420129312245171379465907841894527}{7097793691045944993173260257257102677872866428523} a^{23} + \frac{211821222779971105733660121687247762949773593092}{7097793691045944993173260257257102677872866428523} a^{22} - \frac{1770496799184591195576961692043745804371428583764}{7097793691045944993173260257257102677872866428523} a^{21} + \frac{120272577512544207421880237187269084081475954633}{7097793691045944993173260257257102677872866428523} a^{20} + \frac{1861845387971323579506787628416111636995738320881}{7097793691045944993173260257257102677872866428523} a^{19} + \frac{588751976373293221844784246513290789500688241725}{7097793691045944993173260257257102677872866428523} a^{18} + \frac{1545480270274037612001613698476150694226228240439}{7097793691045944993173260257257102677872866428523} a^{17} + \frac{3469826602588665714950125316840091962743478252077}{7097793691045944993173260257257102677872866428523} a^{16} + \frac{969159906122054888162908754803583618548048467242}{7097793691045944993173260257257102677872866428523} a^{15} - \frac{2486945810405552483659331168811607984604431089077}{7097793691045944993173260257257102677872866428523} a^{14} - \frac{776686674249708999895196437331415114897550515829}{7097793691045944993173260257257102677872866428523} a^{13} - \frac{1991528463746846780628304383640872709090346750363}{7097793691045944993173260257257102677872866428523} a^{12} + \frac{3218959885647392799289452218941735883432495053649}{7097793691045944993173260257257102677872866428523} a^{11} + \frac{2739100256171103778200907065187556344641507571007}{7097793691045944993173260257257102677872866428523} a^{10} + \frac{634723999143184264481846369976076073395592656896}{7097793691045944993173260257257102677872866428523} a^{9} - \frac{2109185041469950454554052279228057744552598740294}{7097793691045944993173260257257102677872866428523} a^{8} + \frac{1117040073061261950098097306000345467788361342103}{7097793691045944993173260257257102677872866428523} a^{7} + \frac{23610476056158162128430223828145958190781175078}{70275185059860841516566933240169333444285806223} a^{6} - \frac{2836246446468769201765148444616996063845089329980}{7097793691045944993173260257257102677872866428523} a^{5} + \frac{2757880483016368328820556626689721589166931479591}{7097793691045944993173260257257102677872866428523} a^{4} + \frac{2315691497274716143875724303757682954091838592248}{7097793691045944993173260257257102677872866428523} a^{3} + \frac{3325655545349794482873486592916205523008104435721}{7097793691045944993173260257257102677872866428523} a^{2} - \frac{1463616906092701957931550734988169059014528156810}{7097793691045944993173260257257102677872866428523} a + \frac{2978340815081082675067683767793436086991003218877}{7097793691045944993173260257257102677872866428523}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $31$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 471152520983870500 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{16}$ (as 32T32):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2\times C_{16}$
Character table for $C_2\times C_{16}$ is not computed

Intermediate fields

\(\Q(\sqrt{85}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{17})\), 4.4.4913.1, 4.4.122825.1, 8.8.15085980625.1, \(\Q(\zeta_{17})^+\), 8.8.256461670625.1, 16.16.65772588499765987890625.1, \(\Q(\zeta_{51})^+\), 16.16.7336077203498398991356640625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{4}$ R R $16^{2}$ $16^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ R ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ $16^{2}$ $16^{2}$ $16^{2}$ $16^{2}$ $16^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
5Data not computed
17Data not computed