Properties

Label 32.32.4883686140...0625.1
Degree $32$
Signature $[32, 0]$
Discriminant $5^{24}\cdot 17^{30}$
Root discriminant $47.62$
Ramified primes $5, 17$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2\times C_{16}$ (as 32T32)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -16, -304, -116, 6516, 5686, -53690, -46882, 228888, 181071, -589403, -407890, 1001431, 593422, -1183593, -590154, 1004699, 414544, -623732, -209188, 285340, 76152, -95978, -19826, 23426, 3600, -4033, -433, 464, 31, -32, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^32 - x^31 - 32*x^30 + 31*x^29 + 464*x^28 - 433*x^27 - 4033*x^26 + 3600*x^25 + 23426*x^24 - 19826*x^23 - 95978*x^22 + 76152*x^21 + 285340*x^20 - 209188*x^19 - 623732*x^18 + 414544*x^17 + 1004699*x^16 - 590154*x^15 - 1183593*x^14 + 593422*x^13 + 1001431*x^12 - 407890*x^11 - 589403*x^10 + 181071*x^9 + 228888*x^8 - 46882*x^7 - 53690*x^6 + 5686*x^5 + 6516*x^4 - 116*x^3 - 304*x^2 - 16*x + 1)
 
gp: K = bnfinit(x^32 - x^31 - 32*x^30 + 31*x^29 + 464*x^28 - 433*x^27 - 4033*x^26 + 3600*x^25 + 23426*x^24 - 19826*x^23 - 95978*x^22 + 76152*x^21 + 285340*x^20 - 209188*x^19 - 623732*x^18 + 414544*x^17 + 1004699*x^16 - 590154*x^15 - 1183593*x^14 + 593422*x^13 + 1001431*x^12 - 407890*x^11 - 589403*x^10 + 181071*x^9 + 228888*x^8 - 46882*x^7 - 53690*x^6 + 5686*x^5 + 6516*x^4 - 116*x^3 - 304*x^2 - 16*x + 1, 1)
 

Normalized defining polynomial

\( x^{32} - x^{31} - 32 x^{30} + 31 x^{29} + 464 x^{28} - 433 x^{27} - 4033 x^{26} + 3600 x^{25} + 23426 x^{24} - 19826 x^{23} - 95978 x^{22} + 76152 x^{21} + 285340 x^{20} - 209188 x^{19} - 623732 x^{18} + 414544 x^{17} + 1004699 x^{16} - 590154 x^{15} - 1183593 x^{14} + 593422 x^{13} + 1001431 x^{12} - 407890 x^{11} - 589403 x^{10} + 181071 x^{9} + 228888 x^{8} - 46882 x^{7} - 53690 x^{6} + 5686 x^{5} + 6516 x^{4} - 116 x^{3} - 304 x^{2} - 16 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $32$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[32, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(488368614066527220997452797221673658430576324462890625=5^{24}\cdot 17^{30}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $47.62$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(85=5\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{85}(1,·)$, $\chi_{85}(3,·)$, $\chi_{85}(4,·)$, $\chi_{85}(7,·)$, $\chi_{85}(9,·)$, $\chi_{85}(12,·)$, $\chi_{85}(16,·)$, $\chi_{85}(19,·)$, $\chi_{85}(21,·)$, $\chi_{85}(22,·)$, $\chi_{85}(23,·)$, $\chi_{85}(26,·)$, $\chi_{85}(27,·)$, $\chi_{85}(28,·)$, $\chi_{85}(36,·)$, $\chi_{85}(37,·)$, $\chi_{85}(48,·)$, $\chi_{85}(49,·)$, $\chi_{85}(57,·)$, $\chi_{85}(58,·)$, $\chi_{85}(59,·)$, $\chi_{85}(62,·)$, $\chi_{85}(63,·)$, $\chi_{85}(64,·)$, $\chi_{85}(66,·)$, $\chi_{85}(69,·)$, $\chi_{85}(73,·)$, $\chi_{85}(76,·)$, $\chi_{85}(78,·)$, $\chi_{85}(81,·)$, $\chi_{85}(82,·)$, $\chi_{85}(84,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $31$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 34401098890034160 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{16}$ (as 32T32):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2\times C_{16}$
Character table for $C_2\times C_{16}$ is not computed

Intermediate fields

\(\Q(\sqrt{85}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{17})\), 4.4.4913.1, 4.4.122825.1, 8.8.15085980625.1, 8.8.256461670625.1, \(\Q(\zeta_{17})^+\), 16.16.65772588499765987890625.1, 16.16.698833752810013621337890625.1, 16.16.698833752810013621337890625.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{4}$ $16^{2}$ R $16^{2}$ $16^{2}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{16}$ R ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ $16^{2}$ $16^{2}$ $16^{2}$ $16^{2}$ $16^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
5Data not computed
17Data not computed